wdika commited on
Commit
7b5c06e
·
1 Parent(s): 3dce194

Upload config

Browse files
Files changed (1) hide show
  1. readme_template.md +125 -0
readme_template.md ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ library_name: atommic
6
+ datasets:
7
+ - CC359
8
+ thumbnail: null
9
+ tags:
10
+ - image-reconstruction
11
+ - UNet
12
+ - ATOMMIC
13
+ - pytorch
14
+ model-index:
15
+ - name: REC_UNet_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM
16
+ results: []
17
+
18
+ ---
19
+
20
+
21
+ ## Model Overview
22
+
23
+ UNet for 5x & 10x accelerated MRI Reconstruction on the CC359 dataset.
24
+
25
+
26
+ ## ATOMMIC: Training
27
+
28
+ To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version.
29
+ ```
30
+ pip install atommic['all']
31
+ ```
32
+
33
+ ## How to Use this Model
34
+
35
+ The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
36
+
37
+ Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf).
38
+
39
+ ### Automatically instantiate the model
40
+
41
+ ```base
42
+ pretrained: true
43
+ checkpoint: https://huggingface.co/wdika/REC_UNet_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM/blob/main/REC_UNet_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM.atommic
44
+ mode: test
45
+ ```
46
+
47
+ ### Usage
48
+
49
+ You need to download the CC359 dataset to effectively use this model. Check the [CC359](https://github.com/wdika/atommic/blob/main/projects/REC/CC359/README.md) page for more information.
50
+
51
+
52
+ ## Model Architecture
53
+ ```base
54
+ model:
55
+ model_name: UNet
56
+ channels: 64
57
+ pooling_layers: 4
58
+ in_channels: 2
59
+ out_channels: 2
60
+ padding_size: 11
61
+ dropout: 0.0
62
+ normalize: true
63
+ norm_groups: 2
64
+ dimensionality: 2
65
+ reconstruction_loss:
66
+ l1: 0.1
67
+ ssim: 0.9
68
+ estimate_coil_sensitivity_maps_with_nn: true
69
+ ```
70
+
71
+ ## Training
72
+ ```base
73
+ optim:
74
+ name: adamw
75
+ lr: 1e-4
76
+ betas:
77
+ - 0.9
78
+ - 0.999
79
+ weight_decay: 0.0
80
+ sched:
81
+ name: CosineAnnealing
82
+ min_lr: 0.0
83
+ last_epoch: -1
84
+ warmup_ratio: 0.1
85
+
86
+ trainer:
87
+ strategy: ddp_find_unused_parameters_false
88
+ accelerator: gpu
89
+ devices: 1
90
+ num_nodes: 1
91
+ max_epochs: 20
92
+ precision: 16-mixed
93
+ enable_checkpointing: false
94
+ logger: false
95
+ log_every_n_steps: 50
96
+ check_val_every_n_epoch: -1
97
+ max_steps: -1
98
+ ```
99
+
100
+ ## Performance
101
+
102
+ To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf/targets) configuration files.
103
+
104
+ Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice.
105
+
106
+ Results
107
+ -------
108
+
109
+ Evaluation against RSS targets
110
+ ------------------------------
111
+ 5x: MSE = 0.001429 +/- 0.001373 NMSE = 0.02208 +/- 0.02319 PSNR = 28.85 +/- 4.169 SSIM = 0.8487 +/- 0.07037
112
+
113
+ 10x: MSE = 0.002108 +/- 0.002 NMSE = 0.03273 +/- 0.03417 PSNR = 27.2 +/- 4.197 SSIM = 0.8095 +/- 0.09149
114
+
115
+
116
+ ## Limitations
117
+
118
+ This model was trained on the CC359 using a UNet coil sensitivity maps estimation and might differ from the results reported on the challenge leaderboard.
119
+
120
+
121
+ ## References
122
+
123
+ [1] [ATOMMIC](https://github.com/wdika/atommic)
124
+
125
+ [2] Beauferris, Y., Teuwen, J., Karkalousos, D., Moriakov, N., Caan, M., Yiasemis, G., Rodrigues, L., Lopes, A., Pedrini, H., Rittner, L., Dannecker, M., Studenyak, V., Gröger, F., Vyas, D., Faghih-Roohi, S., Kumar Jethi, A., Chandra Raju, J., Sivaprakasam, M., Lasby, M., … Souza, R. (2022). Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations. Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.919186