wdika's picture
Create README.md
6a77aba verified
---
language:
- en
license: apache-2.0
library_name: atommic
datasets:
- StanfordKnees2019
thumbnail: null
tags:
- image-reconstruction
- RIM
- ATOMMIC
- pytorch
model-index:
- name: REC_RIM_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM
results: []
---
## Model Overview
Recurrent Inference Machines (RIM) for 12x accelerated MRI Reconstruction on the StanfordKnees2019 dataset.
## ATOMMIC: Training
To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version.
```
pip install atommic['all']
```
## How to Use this Model
The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/StanfordKnees2019/conf).
### Automatically instantiate the model
```base
pretrained: true
checkpoint: https://huggingface.co/wdika/REC_RIM_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM/blob/main/REC_RIM_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM.atommic
mode: test
```
### Usage
You need to download the Stanford Knees 2019 dataset to effectively use this model. Check the [StanfordKnees2019](https://github.com/wdika/atommic/blob/main/projects/REC/StanfordKnees2019/README.md) page for more information.
## Model Architecture
```base
model:
model_name: CIRIM
recurrent_layer: GRU
conv_filters:
- 64
- 64
- 2
conv_kernels:
- 5
- 3
- 3
conv_dilations:
- 1
- 2
- 1
conv_bias:
- true
- true
- false
recurrent_filters:
- 64
- 64
- 0
recurrent_kernels:
- 1
- 1
- 0
recurrent_dilations:
- 1
- 1
- 0
recurrent_bias:
- true
- true
- false
depth: 2
time_steps: 8
conv_dim: 2
num_cascades: 1
no_dc: true
keep_prediction: true
accumulate_predictions: true
dimensionality: 2
reconstruction_loss:
wasserstein: 1.0
```
## Training
```base
optim:
name: adamw
lr: 1e-4
betas:
- 0.9
- 0.999
weight_decay: 0.0
sched:
name: InverseSquareRootAnnealing
min_lr: 0.0
last_epoch: -1
warmup_ratio: 0.1
trainer:
strategy: ddp_find_unused_parameters_false
accelerator: gpu
devices: 1
num_nodes: 1
max_epochs: 20
precision: 16-mixed
enable_checkpointing: false
logger: false
log_every_n_steps: 50
check_val_every_n_epoch: -1
max_steps: -1
```
## Performance
To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/StanfordKnees2019/conf/targets) configuration files.
Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice.
Results
-------
Evaluation against SENSE targets
--------------------------------
12x: MSE = 0.001278 +/- 0.006025 NMSE = 0.04409 +/- 0.1243 PSNR = 31.53 +/- 6.786 SSIM = 0.7692 +/- 0.3035
## Limitations
This model was trained on the StanfordKnees2019 batch0 using a UNet coil sensitivity maps estimation and Geometric Decomposition Coil-Compressions to 1-coil, and might differ from the results reported on the challenge leaderboard.
## References
[1] [ATOMMIC](https://github.com/wdika/atommic)
[2] Epperson K, Rt R, Sawyer AM, et al. Creation of Fully Sampled MR Data Repository for Compressed SENSEing of the Knee. SMRT Conference 2013;2013:1