model

This model is a fine-tuned version of openai/whisper-large-v3 on the google/fleurs dataset.

to run

simply install chocolatey run this on your cmd:

@"%SystemRoot%\System32\WindowsPowerShell\v1.0\powershell.exe" -NoProfile -InputFormat None -ExecutionPolicy Bypass -Command "[System.Net.ServicePointManager]::SecurityProtocol = 3072; iex ((New-Object System.Net.WebClient).DownloadString('https://community.chocolatey.org/install.ps1'))" && SET "PATH=%PATH%;%ALLUSERSPROFILE%\chocolatey\bin"

after that install ffmpeg in your device using choco install by running this on cmd after:

choco install ffmpeg

install dependencies in python IDE using:

pip install --upgrade pip

pip install --upgrade git+https://github.com/huggingface/transformers.git accelerate datasets[audio]

then lastly to inference the model:

import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline


device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

model_id = "washeed/audio-transcribe"

model = AutoModelForSpeechSeq2Seq.from_pretrained(
    model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)

processor = AutoProcessor.from_pretrained(model_id)

pipe = pipeline(
    "automatic-speech-recognition",
    model=model,
    tokenizer=processor.tokenizer,
    feature_extractor=processor.feature_extractor,
    max_new_tokens=128,
    chunk_length_s=30,
    batch_size=16,
    return_timestamps=True,
    torch_dtype=torch_dtype,
    device=device,
)

result = pipe("audio.mp3")
print(result["text"])

if you want to transcribe instead of translating just replace the :

result = pipe("audio.mp3")

with

result = pipe("inference.mp3", generate_kwargs={"task": "transcribe"})

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
14
Safetensors
Model size
1.54B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for washeed/Tag-lish_Audio_Transcriber

Finetuned
(361)
this model

Dataset used to train washeed/Tag-lish_Audio_Transcriber