File size: 7,834 Bytes
cb8a534 68ba33e cb8a534 8dc69b3 cb8a534 8dc69b3 cb8a534 959580a cb8a534 d9a2966 2b002cd cb8a534 68ba33e 2b002cd 544bbd2 d9a2966 2b002cd d9a2966 2b002cd d9a2966 2b002cd d9a2966 2b002cd d9a2966 2b002cd d9a2966 2b002cd d9a2966 2b002cd 60a6208 2b002cd 60a6208 2b002cd cb8a534 40deac7 cb8a534 8dc69b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
---
base_model: meta-llama/meta-llama-3.1-8b-instruct
language:
- am
- ha
- ig
- rw
- st
- sn
- so
- sw
- xh
- yo
- zu
- en
- fr
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
datasets:
- masakhane/african-ultrachat
---
# Llama-3.1-8B Instruct African Ultrachat
- **Developed by:** vutuka
- **License:** apache-2.0
- **Finetuned from model :** meta-llama/meta-llama-3.1-8b-instruct
- **Max Content Length :** `8192`
- **Max Steps :** `800`
- **Training Time :** `02h-22min-08s`
- **Setup :**
- `1 x RTX A6000`
- `16 vCPU`
- `58 GB RAM`
- `150 GB Storage`
- **Fine Tuned Language :**
- `Amharic`
- `Hausa`
- `Igbo`
- `Kinyarwanda`
- `Southern Sotho`
- `Shona`
- `Somali`
- `Swahili`
- `Xhosa`
- `Yoruba`
- `Zulu`
- `English`
- `French`
## Introducing Llama 3.1-8B Instruct Fine-Tuned on the Masakhane African UltraChat Dataset
We are excited to announce the fine-tuned version of the Llama 3.1-8B Instruct model, which has been trained on the Masakhane African UltraChat dataset. This fine-tuning leverages the robust architecture of the Llama 3.1 model, designed for high-performance multilingual tasks and long context processing, to enhance its capabilities in understanding and generating responses in African languages.
#### Model Overview
**Llama 3.1-8B Instruct** is part of the Llama 3 family, developed by Meta. It features an optimized transformer architecture and supports multiple languages, including English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai. This model variant is particularly suited for instruction-tuned tasks, making it ideal for dialogue and assistant-like applications.
#### Training and Fine-Tuning
The model was fine-tuned using the Masakhane African UltraChat dataset, which is a diverse and extensive collection of conversational data aimed at promoting and enhancing NLP capabilities for African languages. The fine-tuning process involved supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF), ensuring the model aligns well with human preferences for helpfulness and safety.
```py
trainer = SFTTrainer(
model = model,
tokenizer = tokenizer,
train_dataset = shuffled_dataset,
dataset_text_field = "text",
max_seq_length = max_seq_length,
dataset_num_proc = 2,
packing = False, # Can make training 5x faster for short sequences.
args = TrainingArguments(
per_device_train_batch_size = 2,
gradient_accumulation_steps = 4,
warmup_steps = 5,
max_steps = 800,
do_eval=True,
learning_rate = 3e-4,
log_level="debug",
#fp16 = not is_bfloat16_supported(),
bf16 = True,
logging_steps = 10,
optim = "adamw_8bit",
weight_decay = 0.01,
lr_scheduler_type = "linear",
seed = 3407,
output_dir = "outputs",
report_to='wandb',
warmup_ratio=0.3,
),
)
```
#### Performance and Capabilities
The fine-tuned Llama 3.1-8B model demonstrates improved performance in understanding and generating text in African languages, providing accurate and contextually appropriate responses. It is designed to handle various conversational tasks, from casual dialogue to more complex inquiries, making it a valuable tool for applications targeting African language users.
#### Key Features
- **Multilingual Support**: Enhanced capabilities in multiple languages, including African languages.
- **Long Context Handling**: Supports up to 128k tokens, making it suitable for long-form conversations.
- **Instruction-Tuned**: Optimized for generating accurate and helpful responses based on user instructions.
- **High Performance**: Utilizes advanced techniques like Grouped-Query Attention (GQA) for improved scalability and efficiency.
## Tokenizer & Chat Format
```py
from unsloth.chat_templates import get_chat_template
tokenizer = get_chat_template(
tokenizer,
chat_template = "llama-3", # Supports zephyr, chatml, mistral, llama, alpaca, vicuna, vicuna_old, unsloth
mapping={
"role": "role",
"content": "content",
"user": "",
"assistant": "",
}
)
def formatting_prompts_func(examples):
convos = examples["messages"]
texts = [tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = False) for convo in convos]
return { "text" : texts, }
pass
```
## Inference with Unsloth
```py
def chat_llama3_african_ultrachat(message: str, context: str):
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
messages = [
{"role": "system", "content": context},
{"role": "user", "content": message},
]
inputs = tokenizer.apply_chat_template(
messages,
tokenize = True,
add_generation_prompt = True, # Must add for generation
return_tensors = "pt",
).to("cuda")
from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer)
#_ = model.generate(input_ids = inputs, streamer = text_streamer, max_new_tokens = 1024, use_cache = True)
output = model.generate(input_ids = inputs, max_new_tokens = 1024, use_cache = True)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
# Extract the assistant's message
user_marker = "user"
assistant_marker = "assistant"
response_start = generated_text.find(assistant_marker) + len(assistant_marker)
response_end = generated_text.find(user_marker, response_start)
if response_end == -1:
response = generated_text[response_start:].strip()
else:
response = generated_text[response_start:response_end].strip()
return response
```
```py
chat_llama3_african_ultrachat(
message="Habari !",
context="Wewe ni wakala wa mtandaoni anayesaidia ambaye hujibu maswali kwa upole na heshima."
)
```
```txt
<|begin_of_text|><|start_header_id|>user<|end_header_id|>
Wewe ni wakala wa mtandaoni anayesaidia ambaye hujibu maswali kwa upole na heshima.<|eot_id|><|start_header_id|>user<|end_header_id|>
Habari!<|eot_id|><|start_header_id|>assistant<|end_header_id|>
Habari yako? Je, unatafuta ushauri au maelezo kuhusu jambo maalum? Ni furaha yangu kusaidia.<|eot_id|>
```
## Inference with Unsloth Chat (`new`)
- Run our code in a `T4` and try the model.
```sh
#@title ↙️ Press ▶ to start 🦥 Unsloth Studio Chat for Gemma-2 2b Instruct
# Unsloth Studio
# Copyright (C) 2024-present the Unsloth AI team. All rights reserved.
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
!git clone https://github.com/unslothai/studio > /dev/null 2>&1
with open("studio/unsloth_studio/chat.py", "r") as chat_module:
code = chat_module.read().replace(
'MODEL_NAME = "vutuka/Llama-3.1-8B-Instruct-African-Ultrachat"',
'MODEL_NAME = "unsloth/gemma-2-2b-it-bnb-4bit"',
)
exec(code)
```
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |