Svngoku commited on
Commit
d9a2966
·
verified ·
1 Parent(s): 2b002cd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +43 -23
README.md CHANGED
@@ -24,9 +24,7 @@ tags:
24
  datasets:
25
  - masakhane/african-ultrachat
26
  ---
27
-
28
- # Llama-3.1 8B Instruct African-Ultrachat
29
-
30
 
31
  - **Developed by:** vutuka
32
  - **License:** apache-2.0
@@ -40,31 +38,17 @@ datasets:
40
  - `58 GB RAM`
41
  - `150 GB Storage`
42
 
 
43
 
44
- ## Tokenizer & Chat Format
45
 
46
- ```py
47
- from unsloth.chat_templates import get_chat_template
48
 
49
- tokenizer = get_chat_template(
50
- tokenizer,
51
- chat_template = "llama-3", # Supports zephyr, chatml, mistral, llama, alpaca, vicuna, vicuna_old, unsloth
52
- mapping={
53
- "role": "role",
54
- "content": "content",
55
- "user": "",
56
- "assistant": "",
57
- }
58
- )
59
 
60
- def formatting_prompts_func(examples):
61
- convos = examples["messages"]
62
- texts = [tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = False) for convo in convos]
63
- return { "text" : texts, }
64
- pass
65
- ```
66
 
67
- ## Trainer
68
 
69
  ```py
70
  trainer = SFTTrainer(
@@ -97,6 +81,42 @@ trainer = SFTTrainer(
97
  )
98
  ```
99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100
  ## Inference with Unsloth
101
 
102
  ```py
 
24
  datasets:
25
  - masakhane/african-ultrachat
26
  ---
27
+ # Llama-3.1-8B Instruct African Ultrachat
 
 
28
 
29
  - **Developed by:** vutuka
30
  - **License:** apache-2.0
 
38
  - `58 GB RAM`
39
  - `150 GB Storage`
40
 
41
+ ## Introducing Llama 3.1-8B Instruct Fine-Tuned on the Masakhane African UltraChat Dataset
42
 
43
+ We are excited to announce the fine-tuned version of the Llama 3.1-8B Instruct model, which has been trained on the Masakhane African UltraChat dataset. This fine-tuning leverages the robust architecture of the Llama 3.1 model, designed for high-performance multilingual tasks and long context processing, to enhance its capabilities in understanding and generating responses in African languages.
44
 
45
+ #### Model Overview
 
46
 
47
+ **Llama 3.1-8B Instruct** is part of the Llama 3 family, developed by Meta. It features an optimized transformer architecture and supports multiple languages, including English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai. This model variant is particularly suited for instruction-tuned tasks, making it ideal for dialogue and assistant-like applications.
 
 
 
 
 
 
 
 
 
48
 
49
+ #### Training and Fine-Tuning
 
 
 
 
 
50
 
51
+ The model was fine-tuned using the Masakhane African UltraChat dataset, which is a diverse and extensive collection of conversational data aimed at promoting and enhancing NLP capabilities for African languages. The fine-tuning process involved supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF), ensuring the model aligns well with human preferences for helpfulness and safety.
52
 
53
  ```py
54
  trainer = SFTTrainer(
 
81
  )
82
  ```
83
 
84
+ #### Performance and Capabilities
85
+
86
+ The fine-tuned Llama 3.1-8B model demonstrates improved performance in understanding and generating text in African languages, providing accurate and contextually appropriate responses. It is designed to handle various conversational tasks, from casual dialogue to more complex inquiries, making it a valuable tool for applications targeting African language users.
87
+
88
+ #### Key Features
89
+
90
+ - **Multilingual Support**: Enhanced capabilities in multiple languages, including African languages.
91
+ - **Long Context Handling**: Supports up to 128k tokens, making it suitable for long-form conversations.
92
+ - **Instruction-Tuned**: Optimized for generating accurate and helpful responses based on user instructions.
93
+ - **High Performance**: Utilizes advanced techniques like Grouped-Query Attention (GQA) for improved scalability and efficiency.
94
+
95
+
96
+ ## Tokenizer & Chat Format
97
+
98
+ ```py
99
+ from unsloth.chat_templates import get_chat_template
100
+
101
+ tokenizer = get_chat_template(
102
+ tokenizer,
103
+ chat_template = "llama-3", # Supports zephyr, chatml, mistral, llama, alpaca, vicuna, vicuna_old, unsloth
104
+ mapping={
105
+ "role": "role",
106
+ "content": "content",
107
+ "user": "",
108
+ "assistant": "",
109
+ }
110
+ )
111
+
112
+ def formatting_prompts_func(examples):
113
+ convos = examples["messages"]
114
+ texts = [tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = False) for convo in convos]
115
+ return { "text" : texts, }
116
+ pass
117
+ ```
118
+
119
+
120
  ## Inference with Unsloth
121
 
122
  ```py