Resnet152-30VN
This model is a fine-tuned version of microsoft/resnet-152 on the vuongnhathien/30VNFoods dataset. It achieves the following results on the evaluation set:
- Loss: 0.5769
- Accuracy: 0.8353
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Accuracy | Validation Loss |
---|---|---|---|---|
1.4198 | 1.0 | 275 | 0.7348 | 0.8741 |
0.565 | 2.0 | 550 | 0.8119 | 0.6347 |
0.2846 | 3.0 | 825 | 0.8310 | 0.6003 |
0.1727 | 4.0 | 1100 | 0.8410 | 0.6041 |
0.0835 | 5.0 | 1375 | 0.8461 | 0.6464 |
0.0534 | 6.0 | 1650 | 0.8565 | 0.6776 |
0.0283 | 7.0 | 1925 | 0.7107 | 0.8501 |
0.0186 | 8.0 | 2200 | 0.7066 | 0.8620 |
0.0111 | 9.0 | 2475 | 0.6772 | 0.8648 |
0.0096 | 10.0 | 2750 | 0.6898 | 0.8628 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 245
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for vuongnhathien/Resnet152-30VN
Base model
microsoft/resnet-152Evaluation results
- Accuracy on vuongnhathien/30VNFoodsvalidation set self-reported0.835