jpqd-swin-b-20eph-r1.00-s2e5-mock-main-merge-pr2

This model is a fine-tuned version of microsoft/swin-base-patch4-window7-224 on the food101 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2715
  • Accuracy: 0.9179

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
5.1452 0.42 500 5.4928 0.6440
0.9839 0.84 1000 0.7956 0.8580
0.8533 1.27 1500 0.4392 0.8911
0.6123 1.69 2000 0.3768 0.8983
12.3076 2.11 2500 12.0798 0.8953
49.301 2.54 3000 48.6292 0.8343
75.6345 2.96 3500 75.7027 0.6777
94.2556 3.38 4000 93.5852 0.5604
103.3226 3.8 4500 103.1255 0.5702
107.3423 4.23 5000 107.9250 0.5359
108.9013 4.65 5500 108.5225 0.5882
2.045 5.07 6000 1.1149 0.8154
1.3377 5.49 6500 0.6747 0.8665
0.7565 5.92 7000 0.5814 0.8765
0.7493 6.34 7500 0.5460 0.8840
0.7693 6.76 8000 0.5109 0.8851
0.6082 7.19 8500 0.4893 0.8895
0.7575 7.61 9000 0.4521 0.8943
0.7943 8.03 9500 0.4465 0.8941
0.5521 8.45 10000 0.4119 0.8967
0.6536 8.88 10500 0.4071 0.9010
0.5164 9.3 11000 0.3945 0.9010
0.6687 9.72 11500 0.3884 0.9030
0.4374 10.14 12000 0.3764 0.9040
0.7326 10.57 12500 0.3678 0.9060
0.6148 10.99 13000 0.3602 0.9057
0.6068 11.41 13500 0.3566 0.9075
0.6105 11.83 14000 0.3456 0.9074
0.5277 12.26 14500 0.3383 0.9107
0.5255 12.68 15000 0.3328 0.9097
0.4536 13.1 15500 0.3268 0.9108
0.5337 13.52 16000 0.3256 0.9107
0.5299 13.95 16500 0.3161 0.9124
0.3037 14.37 17000 0.3162 0.9123
0.4171 14.79 17500 0.3078 0.9124
0.5375 15.22 18000 0.3002 0.9116
0.2722 15.64 18500 0.2953 0.9134
0.3684 16.06 19000 0.2960 0.9137
0.4369 16.48 19500 0.2918 0.9150
0.3346 16.91 20000 0.2856 0.9171
0.3645 17.33 20500 0.2856 0.9162
0.4475 17.75 21000 0.2833 0.9157
0.2553 18.17 21500 0.2788 0.9167
0.5098 18.6 22000 0.2766 0.9164
0.4149 19.02 22500 0.2732 0.9177
0.3737 19.44 23000 0.2734 0.9181
0.325 19.86 23500 0.2715 0.9176

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu117
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train vuiseng9/swin-base-food101-int8-structured44.5-20eph

Evaluation results