YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

This model is a downstream fine-tuning of vuiseng9/bert-base-squadv1-block-pruning-hybrid. "filled" means unstructured fine-grained sparsified parameters are allowed to learn during fine-tuning. "lt" means distillation of larger model as teacher, i.e. bert-large-uncased-whole-word-masking-finetuned-squad

  eval_exact_match = 80.3311
  eval_f1          = 87.69
  eval_samples     =   10784

This model is a replication of block pruning paper with its open-sourced codebase (forked and modified). To reproduce this model, pls follow documentation here until step 3.

Eval

The model cannot be evaluated with HF QA example out-of-the-box as the final dimension of the model architecture has been realized. Follow the custom setup below.

# OpenVINO/NNCF
git clone https://github.com/vuiseng9/nncf && cd nncf
git checkout tld-poc
git reset --hard 1dec7afe7a4b567c059fcf287ea2c234980fded2
python setup.py develop
pip install -r examples/torch/requirements.txt

# Huggingface nn_pruning
git clone https://github.com/vuiseng9/nn_pruning && cd nn_pruning
git checkout reproduce-evaluation
git reset --hard 2d4e196d694c465e43e5fbce6c3836d0a60e1446
pip install -e ".[dev]"

# Huggingface Transformers
git clone https://github.com/vuiseng9/transformers && cd transformers
git checkout tld-poc
git reset --hard 10a1e29d84484e48fd106f58957d9ffc89dc43c5
pip install -e .
head -n 1 examples/pytorch/question-answering/requirements.txt | xargs -i pip install {}

This repo must be cloned locally.

git clone https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt

Add --optimize_model_before_eval and --optimized_checkpoint /path/to/clone during evaluation.

export CUDA_VISIBLE_DEVICES=0

OUTDIR=eval-bert-base-squadv1-block-pruning-hybrid-filled-lt-cropped
WORKDIR=transformers/examples/pytorch/question-answering
cd $WORKDIR
mkdir $OUTDIR

nohup python run_qa.py  \
    --model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid  \
    --dataset_name squad  \
    --optimize_model_before_eval \
    --optimized_checkpoint /path/to/clone/bert-base-squadv1-block-pruning-hybrid-filled-lt  \
    --do_eval  \
    --per_device_eval_batch_size 128  \
    --max_seq_length 384  \
    --doc_stride 128  \
    --overwrite_output_dir \
    --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log &
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.