whisper-small

This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1540
  • Wer: 13.8083

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.3889 0.0 1 3.1044 49.3314
0.174 0.29 1000 0.2346 20.9796
0.1521 0.58 2000 0.1945 17.9616
0.1301 0.88 3000 0.1747 16.2713
0.0951 1.17 4000 0.1684 15.3962
0.0955 1.46 5000 0.1606 14.7689
0.096 1.75 6000 0.1561 14.3492
0.0668 2.04 7000 0.1554 14.0853
0.062 2.34 8000 0.1555 14.0599
0.0664 2.63 9000 0.1548 13.9191
0.0678 2.92 10000 0.1540 13.8083

Framework versions

  • Transformers 4.27.4
  • Pytorch 2.0.0
  • Datasets 2.11.0
  • Tokenizers 0.13.3
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.