whisper-tiny-en / README.md
voxxer's picture
update model card README.md
f5343c6
metadata
language:
  - en
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - PolyAI/minds14
metrics:
  - wer
model-index:
  - name: Whisper Tiny English
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Minds 14
          type: PolyAI/minds14
          config: en-US
          split: train
          args: en-US
        metrics:
          - name: Wer
            type: wer
            value: 0.258610624635143

Whisper Tiny English

This model is a fine-tuned version of openai/whisper-tiny on the Minds 14 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4154
  • Wer Ortho: 0.2659
  • Wer: 0.2586

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 20
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
4.2901 0.33 5 4.2556 0.4220 0.2919
4.3552 0.67 10 3.7784 0.4226 0.2931
3.453 1.0 15 2.9546 0.4152 0.2907
2.9147 1.33 20 2.4090 0.3988 0.2931
2.3042 1.67 25 1.7869 0.3701 0.3001
1.6056 2.0 30 1.1284 0.3494 0.3012
0.988 2.33 35 0.6892 0.3860 0.3403
0.6605 2.67 40 0.5611 0.3128 0.2849
0.4645 3.0 45 0.4982 0.3091 0.2901
0.4884 3.33 50 0.4640 0.2963 0.2855
0.404 3.67 55 0.4453 0.2884 0.2814
0.4745 4.0 60 0.4268 0.2762 0.2697
0.303 4.33 65 0.4182 0.2829 0.2720
0.2717 4.67 70 0.4119 0.2829 0.2750
0.3464 5.0 75 0.4080 0.2860 0.2761
0.2193 5.33 80 0.4054 0.2823 0.2750
0.2138 5.67 85 0.4064 0.2762 0.2680
0.1571 6.0 90 0.4102 0.2799 0.2715
0.1398 6.33 95 0.4146 0.2768 0.2697
0.1523 6.67 100 0.4154 0.2659 0.2586

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3