File size: 6,085 Bytes
6db6ed2
 
 
 
 
2df0641
 
 
 
 
6db6ed2
 
 
 
 
 
 
 
 
 
 
2df0641
 
 
 
 
 
6db6ed2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2df0641
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6db6ed2
 
 
 
2df0641
6db6ed2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: BioMedical_NER-maccrobat-distilbert
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# BioMedical_NER-maccrobat-distilbert

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3622
- Precision: 0.8525
- Recall: 0.9225
- F1: 0.8861
- Accuracy: 0.9419

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 45   | 1.7742          | 0.6341    | 0.0055 | 0.0109 | 0.6272   |
| No log        | 2.0   | 90   | 1.4622          | 0.3671    | 0.1659 | 0.2286 | 0.6546   |
| No log        | 3.0   | 135  | 1.2643          | 0.3409    | 0.2941 | 0.3158 | 0.6742   |
| No log        | 4.0   | 180  | 1.1501          | 0.4039    | 0.4283 | 0.4157 | 0.7028   |
| No log        | 5.0   | 225  | 1.0938          | 0.4145    | 0.5229 | 0.4624 | 0.7098   |
| No log        | 6.0   | 270  | 1.0439          | 0.4371    | 0.5780 | 0.4978 | 0.7257   |
| No log        | 7.0   | 315  | 0.9442          | 0.4997    | 0.6147 | 0.5513 | 0.7583   |
| No log        | 8.0   | 360  | 0.9376          | 0.5126    | 0.6591 | 0.5767 | 0.7629   |
| No log        | 9.0   | 405  | 0.8024          | 0.5512    | 0.6753 | 0.6070 | 0.7921   |
| No log        | 10.0  | 450  | 0.7367          | 0.5949    | 0.6842 | 0.6364 | 0.8121   |
| No log        | 11.0  | 495  | 0.7276          | 0.5959    | 0.7209 | 0.6525 | 0.8222   |
| 1.0374        | 12.0  | 540  | 0.6606          | 0.6329    | 0.7289 | 0.6775 | 0.8369   |
| 1.0374        | 13.0  | 585  | 0.6466          | 0.6335    | 0.7530 | 0.6881 | 0.8423   |
| 1.0374        | 14.0  | 630  | 0.6825          | 0.6200    | 0.7716 | 0.6875 | 0.8397   |
| 1.0374        | 15.0  | 675  | 0.5721          | 0.6767    | 0.7777 | 0.7237 | 0.8657   |
| 1.0374        | 16.0  | 720  | 0.5446          | 0.6965    | 0.7876 | 0.7393 | 0.8771   |
| 1.0374        | 17.0  | 765  | 0.5136          | 0.7475    | 0.7881 | 0.7672 | 0.8872   |
| 1.0374        | 18.0  | 810  | 0.5248          | 0.7185    | 0.8218 | 0.7667 | 0.8866   |
| 1.0374        | 19.0  | 855  | 0.4944          | 0.7494    | 0.8284 | 0.7869 | 0.8961   |
| 1.0374        | 20.0  | 900  | 0.5092          | 0.7299    | 0.8391 | 0.7807 | 0.8920   |
| 1.0374        | 21.0  | 945  | 0.4491          | 0.7775    | 0.8393 | 0.8072 | 0.9083   |
| 1.0374        | 22.0  | 990  | 0.4400          | 0.7744    | 0.8537 | 0.8121 | 0.9104   |
| 0.3072        | 23.0  | 1035 | 0.4593          | 0.7689    | 0.8619 | 0.8128 | 0.9091   |
| 0.3072        | 24.0  | 1080 | 0.4547          | 0.7726    | 0.8670 | 0.8171 | 0.9094   |
| 0.3072        | 25.0  | 1125 | 0.4425          | 0.7825    | 0.8689 | 0.8234 | 0.9141   |
| 0.3072        | 26.0  | 1170 | 0.4229          | 0.7949    | 0.8712 | 0.8313 | 0.9184   |
| 0.3072        | 27.0  | 1215 | 0.4015          | 0.8192    | 0.8731 | 0.8453 | 0.9241   |
| 0.3072        | 28.0  | 1260 | 0.4222          | 0.7995    | 0.8771 | 0.8365 | 0.9197   |
| 0.3072        | 29.0  | 1305 | 0.4119          | 0.8017    | 0.8849 | 0.8413 | 0.9217   |
| 0.3072        | 30.0  | 1350 | 0.3960          | 0.8217    | 0.8864 | 0.8528 | 0.9276   |
| 0.3072        | 31.0  | 1395 | 0.3965          | 0.8204    | 0.8919 | 0.8547 | 0.9278   |
| 0.3072        | 32.0  | 1440 | 0.3936          | 0.8222    | 0.8972 | 0.8581 | 0.9282   |
| 0.3072        | 33.0  | 1485 | 0.3979          | 0.8263    | 0.8991 | 0.8612 | 0.9299   |
| 0.1369        | 34.0  | 1530 | 0.3799          | 0.8352    | 0.8989 | 0.8659 | 0.9333   |
| 0.1369        | 35.0  | 1575 | 0.3712          | 0.8407    | 0.9054 | 0.8718 | 0.9356   |
| 0.1369        | 36.0  | 1620 | 0.3648          | 0.8443    | 0.9046 | 0.8734 | 0.9368   |
| 0.1369        | 37.0  | 1665 | 0.3640          | 0.8414    | 0.9048 | 0.8719 | 0.9368   |
| 0.1369        | 38.0  | 1710 | 0.3632          | 0.8473    | 0.9088 | 0.8770 | 0.9385   |
| 0.1369        | 39.0  | 1755 | 0.3765          | 0.8369    | 0.9118 | 0.8727 | 0.9363   |
| 0.1369        | 40.0  | 1800 | 0.3686          | 0.8465    | 0.9107 | 0.8775 | 0.9382   |
| 0.1369        | 41.0  | 1845 | 0.3644          | 0.8461    | 0.9158 | 0.8796 | 0.9389   |
| 0.1369        | 42.0  | 1890 | 0.3676          | 0.8446    | 0.9156 | 0.8786 | 0.9390   |
| 0.1369        | 43.0  | 1935 | 0.3667          | 0.8451    | 0.9177 | 0.8799 | 0.9397   |
| 0.1369        | 44.0  | 1980 | 0.3622          | 0.8502    | 0.9189 | 0.8832 | 0.9407   |
| 0.0844        | 45.0  | 2025 | 0.3628          | 0.8535    | 0.9187 | 0.8849 | 0.9410   |
| 0.0844        | 46.0  | 2070 | 0.3677          | 0.8510    | 0.9198 | 0.8840 | 0.9406   |
| 0.0844        | 47.0  | 2115 | 0.3670          | 0.8521    | 0.9229 | 0.8861 | 0.9410   |
| 0.0844        | 48.0  | 2160 | 0.3627          | 0.8532    | 0.9227 | 0.8866 | 0.9417   |
| 0.0844        | 49.0  | 2205 | 0.3640          | 0.8511    | 0.9232 | 0.8857 | 0.9417   |
| 0.0844        | 50.0  | 2250 | 0.3622          | 0.8525    | 0.9225 | 0.8861 | 0.9419   |


### Framework versions

- Transformers 4.32.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3