BioMedical_NER-maccrobat-distilbert

This model is a fine-tuned version of distilbert-base-uncased on maccrobat2018_2020 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3418
  • Precision: 0.8858
  • Recall: 0.9578
  • F1: 0.9204
  • Accuracy: 0.9541

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 70

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 45 1.8297 0.0 0.0 0.0 0.6197
No log 2.0 90 1.5738 0.2713 0.0490 0.0830 0.6324
No log 3.0 135 1.3283 0.3165 0.2269 0.2644 0.6654
No log 4.0 180 1.1738 0.3634 0.3538 0.3585 0.6915
No log 5.0 225 1.1003 0.4080 0.5041 0.4510 0.7074
No log 6.0 270 1.0484 0.4339 0.5727 0.4937 0.7193
No log 7.0 315 0.9841 0.4685 0.6209 0.5340 0.7434
No log 8.0 360 0.8765 0.5286 0.6369 0.5777 0.7712
No log 9.0 405 0.8037 0.5638 0.6635 0.6096 0.7922
No log 10.0 450 0.7924 0.5572 0.7013 0.6210 0.8008
No log 11.0 495 0.7403 0.5732 0.7228 0.6394 0.8143
1.0716 12.0 540 0.6235 0.6636 0.7083 0.6852 0.8457
1.0716 13.0 585 0.6182 0.6418 0.7448 0.6895 0.8487
1.0716 14.0 630 0.6498 0.6312 0.7724 0.6947 0.8456
1.0716 15.0 675 0.5830 0.6638 0.7874 0.7204 0.8650
1.0716 16.0 720 0.5199 0.6992 0.7954 0.7442 0.8804
1.0716 17.0 765 0.5470 0.7129 0.8119 0.7592 0.8836
1.0716 18.0 810 0.5065 0.7269 0.8318 0.7758 0.8920
1.0716 19.0 855 0.4645 0.7521 0.8353 0.7916 0.9018
1.0716 20.0 900 0.5204 0.7240 0.8501 0.7820 0.8915
1.0716 21.0 945 0.4383 0.7660 0.8495 0.8056 0.9078
1.0716 22.0 990 0.4345 0.7659 0.8662 0.8130 0.9127
0.2987 23.0 1035 0.4492 0.7675 0.8733 0.8170 0.9118
0.2987 24.0 1080 0.4654 0.7691 0.8805 0.8211 0.9101
0.2987 25.0 1125 0.4186 0.7995 0.8778 0.8368 0.9216
0.2987 26.0 1170 0.3898 0.8131 0.8871 0.8485 0.9269
0.2987 27.0 1215 0.4057 0.8041 0.8928 0.8461 0.9256
0.2987 28.0 1260 0.3916 0.8156 0.8938 0.8529 0.9290
0.2987 29.0 1305 0.3771 0.8250 0.8989 0.8604 0.9317
0.2987 30.0 1350 0.3690 0.8253 0.8997 0.8609 0.9337
0.2987 31.0 1395 0.3716 0.8320 0.9084 0.8685 0.9357
0.2987 32.0 1440 0.3764 0.8278 0.9115 0.8677 0.9349
0.2987 33.0 1485 0.3549 0.8389 0.9113 0.8736 0.9376
0.1133 34.0 1530 0.3715 0.8368 0.9160 0.8746 0.9372
0.1133 35.0 1575 0.3621 0.8452 0.9208 0.8814 0.9401
0.1133 36.0 1620 0.3533 0.8489 0.9248 0.8852 0.9420
0.1133 37.0 1665 0.3471 0.8540 0.9259 0.8885 0.9427
0.1133 38.0 1710 0.3492 0.8504 0.9263 0.8867 0.9423
0.1133 39.0 1755 0.3570 0.8572 0.9327 0.8933 0.9441
0.1133 40.0 1800 0.3647 0.8535 0.9348 0.8923 0.9436
0.1133 41.0 1845 0.3500 0.8656 0.9381 0.9004 0.9466
0.1133 42.0 1890 0.3570 0.8594 0.9405 0.8981 0.9452
0.1133 43.0 1935 0.3545 0.8695 0.9436 0.9050 0.9480
0.1133 44.0 1980 0.3578 0.8660 0.9415 0.9022 0.9467
0.0575 45.0 2025 0.3384 0.8723 0.9419 0.9058 0.9498
0.0575 46.0 2070 0.3450 0.8755 0.9472 0.9100 0.9502
0.0575 47.0 2115 0.3468 0.8736 0.9495 0.9100 0.9500
0.0575 48.0 2160 0.3488 0.8706 0.9502 0.9087 0.9505
0.0575 49.0 2205 0.3480 0.8738 0.9517 0.9111 0.9506
0.0575 50.0 2250 0.3474 0.8725 0.9504 0.9098 0.9501
0.0575 51.0 2295 0.3463 0.8711 0.9498 0.9087 0.9499
0.0575 52.0 2340 0.3328 0.8782 0.9525 0.9138 0.9518
0.0575 53.0 2385 0.3550 0.8738 0.9527 0.9115 0.9508
0.0575 54.0 2430 0.3351 0.8777 0.9525 0.9135 0.9526
0.0575 55.0 2475 0.3438 0.8781 0.9548 0.9148 0.9521
0.0364 56.0 2520 0.3452 0.8797 0.9540 0.9153 0.9521
0.0364 57.0 2565 0.3496 0.8810 0.9561 0.9170 0.9523
0.0364 58.0 2610 0.3472 0.8802 0.9557 0.9164 0.9525
0.0364 59.0 2655 0.3476 0.8813 0.9559 0.9171 0.9530
0.0364 60.0 2700 0.3413 0.8839 0.9563 0.9187 0.9536
0.0364 61.0 2745 0.3395 0.8839 0.9563 0.9187 0.9538
0.0364 62.0 2790 0.3417 0.8843 0.9580 0.9196 0.9537
0.0364 63.0 2835 0.3397 0.8846 0.9563 0.9191 0.9536
0.0364 64.0 2880 0.3428 0.8839 0.9576 0.9192 0.9534
0.0364 65.0 2925 0.3411 0.8847 0.9576 0.9197 0.9539
0.0364 66.0 2970 0.3442 0.8849 0.9574 0.9197 0.9538
0.028 67.0 3015 0.3444 0.8844 0.9578 0.9196 0.9538
0.028 68.0 3060 0.3437 0.8857 0.9584 0.9206 0.9541
0.028 69.0 3105 0.3411 0.8857 0.9582 0.9205 0.9540
0.028 70.0 3150 0.3418 0.8858 0.9578 0.9204 0.9541

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
13
Safetensors
Model size
66.4M params
Tensor type
F32
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for vineetsharma/BioMedical_NER-maccrobat-distilbert

Finetuned
(7163)
this model

Dataset used to train vineetsharma/BioMedical_NER-maccrobat-distilbert