metadata
license: mit
library_name: transformers
tags:
- mergekit
- merge
base_model:
- meta-llama/Meta-Llama-3.1-8B
model-index:
- name: Llama-3.1-8B-Base-Instruct-SLERP
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 29.07
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=vhab10/Llama-3.1-8B-Base-Instruct-SLERP
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 29.93
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=vhab10/Llama-3.1-8B-Base-Instruct-SLERP
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 10.5
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=vhab10/Llama-3.1-8B-Base-Instruct-SLERP
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 6.15
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=vhab10/Llama-3.1-8B-Base-Instruct-SLERP
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 9.37
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=vhab10/Llama-3.1-8B-Base-Instruct-SLERP
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 29.12
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=vhab10/Llama-3.1-8B-Base-Instruct-SLERP
name: Open LLM Leaderboard
merge
This is a merge of pre-trained language models created using mergekit.
Merge Details
Merge Method
This model was merged using the SLERP merge method.
Models Merged
The following models were included in the merge:
Configuration
The following YAML configuration was used to produce this model:
slices:
- sources:
- model: meta-llama/Meta-Llama-3.1-8B
layer_range:
- 0
- 32
- model: meta-llama/Meta-Llama-3.1-8B-Instruct
layer_range:
- 0
- 32
merge_method: slerp
base_model: meta-llama/Meta-Llama-3.1-8B
parameters:
t:
- filter: self_attn
value:
- 0
- 0.5
- 0.3
- 0.7
- 1
- filter: mlp
value:
- 1
- 0.5
- 0.7
- 0.3
- 0
- value: 0.5
dtype: bfloat16
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 19.02 |
IFEval (0-Shot) | 29.07 |
BBH (3-Shot) | 29.93 |
MATH Lvl 5 (4-Shot) | 10.50 |
GPQA (0-shot) | 6.15 |
MuSR (0-shot) | 9.37 |
MMLU-PRO (5-shot) | 29.12 |