File size: 9,407 Bytes
56fea1d
 
 
 
 
 
 
 
0a3ce90
56fea1d
8c9e2d6
 
 
 
366d3d3
8c9e2d6
 
 
26c50e3
8c9e2d6
 
 
 
 
 
 
 
 
 
defb45a
8c9e2d6
 
10b1985
518601e
67ba196
518601e
0a35e15
4e33afe
0da803b
776ed42
9304789
3f5fac3
9304789
10b1985
56fea1d
 
 
10b1985
 
56fea1d
776ed42
56fea1d
10b1985
56fea1d
 
5ff0f40
 
 
 
 
 
 
 
10b1985
56fea1d
 
 
1a39581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e05c5ec
1a39581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b313d82
56fea1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59100fa
10b1985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
---
base_model:
- v000000/HaloMaidRP-v1.32-15B-Ruby
- v000000/HaloMaidRP-v1.32-15B-Sapphire
library_name: transformers
tags:
- mergekit
- merge
- llama
---
<!DOCTYPE html>
<style>

h1 {
  color: #500C3F; /* Red color */
  font-size: 1.25em; /* Larger font size */
  text-align: left; /* Center alignment */
  text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.5); /* Shadow effect */
  background: linear-gradient(90deg, #500C3F,  #5d72ff); /* Gradient background */
  -webkit-background-clip: text; /* Clipping the background to text */
  -webkit-text-fill-color: transparent; /* Making the text transparent */
}

</style>
<html lang="en">
<head>
</head>
<body>
Healed Llama-3 15B Frankenmerge

---------------------------------------------------------------------
  
<h1>Llama3-15B-HaloMaidRP-v1.33-8K</h1>

![image/jpeg](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F64f74b6e6389380c77562762%2FMCdGdalCCtOVPn8X7rqha.jpeg%3C%2Fspan%3E)%3C%2Fspan%3E

# <h1>Quants:</h1>
* [GGUF Q5_K_M](https://huggingface.co/v000000/HaloMaidRP-v1.33-15B-L3-Q5_K_M-GGUF)

This is the third iteration "Emerald" of the final four and the one I liked the most. It has had limited testing though, but seems relatively decent.

Findings: o_proj and down_proj can be stolen from Aethora-v2 so new 15B frankenmerges don't seem to really ***need*** finetuning to "heal" the layers.

# <h1>merge</h1>

This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).

# <h1>Merge Details</h1>
# <h1>Merge Method</h1>

This model was merged using an iterative merging process. (Probably ~10 models got thrown away in the process.)

# <h1>Models Merged</h1>

The following models were included in the merge:
* [grimjim/Llama-3-Instruct-abliteration-LoRA-8B](https://huggingface.co/grimjim/Llama-3-Instruct-abliteration-LoRA-8B)
* [UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3)
* [NeverSleep/Llama-3-Lumimaid-8B-v0.1-OAS](https://huggingface.co/NeverSleep/Llama-3-Lumimaid-8B-v0.1-OAS)
* [maldv/llama-3-fantasy-writer-8b](https://huggingface.co/maldv/llama-3-fantasy-writer-8b)
* [tokyotech-llm/Llama-3-Swallow-8B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3-Swallow-8B-v0.1)
* [Sao10K/L3-8B-Stheno-v3.2](https://huggingface.co/Sao10K/L3-8B-Stheno-v3.2)
* [ZeusLabs/L3-Aethora-15B-V2](https://huggingface.co/ZeusLabs/L3-Aethora-15B-V2)

# <h1>Configuration</h1>

The following YAML configuration was used to produce this model:

# Recipe
```yaml
#1. Take a collection of RP and Storywriter 8b models and merge them.

dtype: float32
merge_method: linear
      weight: 0.15
    parameters:
  - model: tokyotech-llm/Llama-3-Swallow-8B-v0.1
      weight: 0.4
    parameters:
  - model: NeverSleep/Llama-3-Lumimaid-8B-v0.1-OAS
      weight: 0.1
    parameters:
  - model: maldv/llama-3-fantasy-writer-8b
      weight: 0.6
    parameters:
  - model: Nitral-AI/Hathor_Respawn-L3-8B-v0.8
 
#2. Use task-arithmetic to learn the vector directions from the RP-Mix onto Llama-3-SPPO which is the smartest 8B model imo, this way we can preserve Meta's multi-bullion dollar tuning.

models:
dtype: float32
    normalize: false
parameters:
base_model: UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3
merge_method: task_arithmetic
      weight: 0.35
    parameters:
  - model: rpmix-part1
      weight: 1.0
    parameters:
  - model: UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3
  
#2,5. Apply abliteration to the previous model

models:
dtype: float32
merge_method: linear
      weight: 1.0
    parameters:
  - model: sppo-rpmix-part2+grimjim/Llama-3-Instruct-abliteration-LoRA-8B
  
#3. Create an abliterated version of Stheno3.2-8B as we will use this in the 15B frankenmerge.

models:
dtype: float32
merge_method: linear
      weight: 1.0
    parameters:
  - model: Sao10K/L3-8B-Stheno-v3.2+grimjim/Llama-3-Instruct-abliteration-LoRA-8B
  
#4. Make an inverted version of a Llama-3-15B Frankenmerge with the previous models.

models:
    model: v000000/L3-8B-Stheno-v3.2-abliterated
  - layer_range: [24, 32]
- sources:
    model: v000000/SwallowMaid-8B-L3-SPPO-abliterated
  - layer_range: [8, 24]
- sources:
    parameters:
    model: v000000/L3-8B-Stheno-v3.2-abliterated
  - layer_range: [8, 24]
- sources:
    model: v000000/SwallowMaid-8B-L3-SPPO-abliterated
  - layer_range: [0, 24]
- sources:
slices:

#5. Make an non-inverted version of a Llama-3-15B Frankenmerge with the previous models.
merge_method: passthrough
dtype: float32
    model: v000000/SwallowMaid-8B-L3-SPPO-abliterated
  - layer_range: [24, 32]
- sources:
    model: v000000/L3-8B-Stheno-v3.2-abliterated
  - layer_range: [8, 24]
- sources:
    model: v000000/SwallowMaid-8B-L3-SPPO-abliterated
  - layer_range: [8, 24]
- sources:
    model: v000000/L3-8B-Stheno-v3.2-abliterated
  - layer_range: [0, 24]
- sources:
slices:

#6. Test the previous two models and determine which is better in the output/input stage and which is best in the middle and we slerp them in a v-shape.

merge_method: passthrough
dtype: float32
  t: [0, 0.5, 1, 0.5, 0]
parameters:
dtype: float32
base_model: v000000/Sthalomaid-15B-abliterated
merge_method: slerp
  - model: v000000/Sthalomaid-15B-Inverted-abliterated
  - model: v000000/Sthalomaid-15B-abliterated
  
#7. Apply Blackroot Lora in a model_stock merge of the different models so far

models:
dtype: float32
merge_method: model_stock
base_model: v000000/Sthalomaid-V-15B-abliterated
  - model: v000000/Sthalomaid-15B-Inverted-abliterated+Blackroot/Llama-3-8B-Abomination-LORA
  - model: v000000/Sthalomaid-15B-abliterated+Blackroot/Llama-3-8B-Abomination-LORA
  - model: v000000/Sthalomaid-V-15B-abliterated+Blackroot/Llama-3-8B-Abomination-LORA #seems to work on 15b
  - model: v000000/Sthalomaid-15B-Inverted-abliterated
  - model: v000000/Sthalomaid-15B-abliterated
  - model: v000000/Sthalomaid-V-15B-abliterated
 
#7. Create another 15B frankenmerge from just SPPO and abiterate it, this is so we can merge in a smarter model.

models:
dtype: float32
merge_method: passthrough
slices:
- sources:
  - layer_range: [0, 24]
    model: UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3+grimjim/Llama-3-Instruct-abliteration-LoRA-8B
- sources:
  - layer_range: [8, 24]
    model: UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3+grimjim/Llama-3-Instruct-abliteration-LoRA-8B
    parameters:
- sources:
  - layer_range: [8, 24]
    model: UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3+grimjim/Llama-3-Instruct-abliteration-LoRA-8B
- sources:
  - layer_range: [24, 32]
    model: UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3+grimjim/Llama-3-Instruct-abliteration-LoRA-8B

#8. Learn vectors from our previous blackroot model_stock model to smarter SPPO-Iter model to preserve RP capabilities.

models:
  - model: v000000/HaloMaidRP-V-15B-Blackroot-v0.1
    parameters:
      weight: 1.3
merge_method: task_arithmetic
base_model: v000000/Llama-3-Instruct-15B-SPPO-Iter3-abliterated
parameters:
  normalize: false

#9. Merge the blackroot model_stock-15B and SPPO-15B models together with a smooth gradient.

dtype: float32
slices:
  - sources:
      - model: v000000/HaloMaidRP-V-15B-Blackroot-v0.1
        layer_range: [0, 64]
      - model: v000000/HaloMaidRP-V-15B-Blackroot-v0.223
        layer_range: [0, 64]
merge_method: slerp
base_model: v000000/HaloMaidRP-V-15B-Blackroot-v0.223
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1, 0.1, 0.6, 0.3, 0.8, 0.5]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0, 0.3, 0.4, 0.7, 0.2, 0.5]
    - value: 0.5
dtype: bfloat16 #Oops accidentally swtich to half precision do this also very important

#10. Heal the layers, o_proj and down_proj seems to be the main tensors that determine adaptation to a new architecture, so we can steal them from an already finetuned 15B, 
#this way we don't need to finetune our new frankenmerge at all to have full performance. Why reinvent the wheel?
#sapphire
models:
  - model: v000000/HaloMaidRP1_component
merge_method: slerp
base_model: ZeusLabs/L3-Aethora-15B-V2
parameters:
  t:
    - filter: o_proj
      value: 0
    - filter: down_proj
      value: 0
    - value: 1
dtype: bfloat16

#11. Go back to an earlier checkpoint that had interesting results with being very depraved before the blackroot model_stock merge and do the same as (10.) to heal it.
#ruby
models:
  - model: v000000/component____HaloMaidRP-V
merge_method: slerp
base_model: ZeusLabs/L3-Aethora-15B-V2
parameters:
  t:
    - filter: o_proj
      value: 0
    - filter: down_proj
      value: 0
    - value: 1
dtype: bfloat16

#12. Then we merge these two together to get a semi-depraved smart model.
#emerald (this)
slices:
  - sources:
      - model: v000000/HaloMaidRP-v1.32-15B-Sapphire
        layer_range: [0, 64]
      - model: v000000/HaloMaidRP-v1.32-15B-Ruby
        layer_range: [0, 64]
merge_method: slerp
base_model: v000000/HaloMaidRP-v1.32-15B-Sapphire
parameters:
  t:
    - filter: self_attn
      value: [0.1, 0.6, 0.3, 0.8, 0.5]
    - filter: mlp
      value: [0.9, 0.4, 0.7, 0.2, 0.5]
    - value: 0.5
dtype: bfloat16

#sapphire version is somewhat better at keeping formatting and is smarter overall, but its very bland imo
```

# <h1>Prompt Template</h1>
```bash
<|begin_of_text|><|start_header_id|>system<|end_header_id|>

{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>

{input}<|eot_id|><|start_header_id|>assistant<|end_header_id|>

{output}<|eot_id|>

```

</body>
</html>