v000000 commited on
Commit
1a39581
·
verified ·
1 Parent(s): 56fea1d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +197 -0
README.md CHANGED
@@ -28,6 +28,202 @@ The following models were included in the merge:
28
  The following YAML configuration was used to produce this model:
29
 
30
  ```yaml
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
  slices:
32
  - sources:
33
  - model: v000000/HaloMaidRP-v1.32-15B-Sapphire
@@ -46,3 +242,4 @@ parameters:
46
  dtype: bfloat16
47
 
48
  ```
 
 
28
  The following YAML configuration was used to produce this model:
29
 
30
  ```yaml
31
+ # Recipe
32
+ ```yaml
33
+ #1. Take a collection of RP and Storywriter 8b models and merge them.
34
+
35
+ dtype: float32
36
+ merge_method: linear
37
+ weight: 0.15
38
+ parameters:
39
+ - model: tokyotech-llm/Llama-3-Swallow-8B-v0.1
40
+ weight: 0.4
41
+ parameters:
42
+ - model: NeverSleep/Llama-3-Lumimaid-8B-v0.1-OAS
43
+ weight: 0.1
44
+ parameters:
45
+ - model: maldv/llama-3-fantasy-writer-8b
46
+ weight: 0.6
47
+ parameters:
48
+ - model: Nitral-AI/Hathor_Respawn-L3-8B-v0.8
49
+
50
+ #2. Use task-arithmetic to learn the vector directions from the RP-Mix onto Llama-3-SPPO which is the smartest 8B model imo, this way we can preserve Meta's multi-bullion dollar tuning.
51
+
52
+ models:
53
+ dtype: float32
54
+ normalize: false
55
+ parameters:
56
+ base_model: UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3
57
+ merge_method: task_arithmetic
58
+ weight: 0.35
59
+ parameters:
60
+ - model: rpmix-part1
61
+ weight: 1.0
62
+ parameters:
63
+ - model: UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3
64
+
65
+ #2,5. Apply abliteration to the previous model
66
+
67
+ models:
68
+ dtype: float32
69
+ merge_method: linear
70
+ weight: 1.0
71
+ parameters:
72
+ - model: sppo-rpmix-part2+grimjim/Llama-3-Instruct-abliteration-LoRA-8B
73
+
74
+ #3. Create an abliterated version of Stheno3.2-8B as we will use this in the 15B frankenmerge.
75
+
76
+ models:
77
+ dtype: float32
78
+ merge_method: linear
79
+ weight: 1.0
80
+ parameters:
81
+ - model: Sao10K/L3-8B-Stheno-v3.2+grimjim/Llama-3-Instruct-abliteration-LoRA-8B
82
+
83
+ #4. Make an inverted version of a Llama-3-15B Frankenmerge with the previous models.
84
+
85
+ models:
86
+ model: v000000/L3-8B-Stheno-v3.2-abliterated
87
+ - layer_range: [24, 32]
88
+ - sources:
89
+ model: v000000/SwallowMaid-8B-L3-SPPO-abliterated
90
+ - layer_range: [8, 24]
91
+ - sources:
92
+ parameters:
93
+ model: v000000/L3-8B-Stheno-v3.2-abliterated
94
+ - layer_range: [8, 24]
95
+ - sources:
96
+ model: v000000/SwallowMaid-8B-L3-SPPO-abliterated
97
+ - layer_range: [0, 24]
98
+ - sources:
99
+ slices:
100
+
101
+ #5. Make an non-inverted version of a Llama-3-15B Frankenmerge with the previous models.
102
+ merge_method: passthrough
103
+ dtype: float32
104
+ model: v000000/SwallowMaid-8B-L3-SPPO-abliterated
105
+ - layer_range: [24, 32]
106
+ - sources:
107
+ model: v000000/L3-8B-Stheno-v3.2-abliterated
108
+ - layer_range: [8, 24]
109
+ - sources:
110
+ model: v000000/SwallowMaid-8B-L3-SPPO-abliterated
111
+ - layer_range: [8, 24]
112
+ - sources:
113
+ model: v000000/L3-8B-Stheno-v3.2-abliterated
114
+ - layer_range: [0, 24]
115
+ - sources:
116
+ slices:
117
+
118
+ #6. Test the previous two models and determine which is better in the output/input stage and which is best in the middle and we slerp them in a v-shape.
119
+
120
+ merge_method: passthrough
121
+ dtype: float32
122
+ t: [0, 0.5, 1, 0.5, 0]
123
+ parameters:
124
+ dtype: float32
125
+ base_model: v000000/Sthalomaid-15B-abliterated
126
+ merge_method: slerp
127
+ - model: v000000/Sthalomaid-15B-Inverted-abliterated
128
+ - model: v000000/Sthalomaid-15B-abliterated
129
+
130
+ #7. Apply Blackroot Lora in a model_stock merge of the different models so far
131
+
132
+ models:
133
+ dtype: float32
134
+ merge_method: model_stock
135
+ base_model: v000000/Sthalomaid-V-15B-abliterated
136
+ - model: v000000/Sthalomaid-15B-Inverted-abliterated+Blackroot/Llama-3-8B-Abomination-LORA
137
+ - model: v000000/Sthalomaid-15B-abliterated+Blackroot/Llama-3-8B-Abomination-LORA
138
+ - model: v000000/Sthalomaid-V-15B-abliterated+Blackroot/Llama-3-8B-Abomination-LORA #seems to work on 15b
139
+ - model: v000000/Sthalomaid-15B-Inverted-abliterated
140
+ - model: v000000/Sthalomaid-15B-abliterated
141
+ - model: v000000/Sthalomaid-V-15B-abliterated
142
+
143
+ #7. Create another 15B frankenmerge from just SPPO and abiterate it, this is so we can merge in a smarter model.
144
+
145
+ models:
146
+ dtype: float32
147
+ merge_method: passthrough
148
+ slices:
149
+ - sources:
150
+ - layer_range: [0, 24]
151
+ model: UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3+grimjim/Llama-3-Instruct-abliteration-LoRA-8B
152
+ - sources:
153
+ - layer_range: [8, 24]
154
+ model: UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3+grimjim/Llama-3-Instruct-abliteration-LoRA-8B
155
+ parameters:
156
+ - sources:
157
+ - layer_range: [8, 24]
158
+ model: UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3+grimjim/Llama-3-Instruct-abliteration-LoRA-8B
159
+ - sources:
160
+ - layer_range: [24, 32]
161
+ model: UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3+grimjim/Llama-3-Instruct-abliteration-LoRA-8B
162
+
163
+ #8. Learn vectors from our previous blackroot model_stock model to smarter SPPO-Iter model to preserve RP capabilities.
164
+
165
+ models:
166
+ - model: v000000/HaloMaidRP-V-15B-Blackroot-v0.1
167
+ parameters:
168
+ weight: 1.3
169
+ merge_method: task_arithmetic
170
+ base_model: v000000/Llama-3-Instruct-15B-SPPO-Iter3-abliterated
171
+ parameters:
172
+ normalize: false
173
+
174
+ #9. Merge the blackroot model_stock-15B and SPPO-15B models together with a smooth gradient.
175
+
176
+ dtype: float32
177
+ slices:
178
+ - sources:
179
+ - model: v000000/HaloMaidRP-V-15B-Blackroot-v0.1
180
+ layer_range: [0, 64]
181
+ - model: v000000/HaloMaidRP-V-15B-Blackroot-v0.223
182
+ layer_range: [0, 64]
183
+ merge_method: slerp
184
+ base_model: v000000/HaloMaidRP-V-15B-Blackroot-v0.223
185
+ parameters:
186
+ t:
187
+ - filter: self_attn
188
+ value: [0, 0.5, 0.3, 0.7, 1, 0.1, 0.6, 0.3, 0.8, 0.5]
189
+ - filter: mlp
190
+ value: [1, 0.5, 0.7, 0.3, 0, 0.3, 0.4, 0.7, 0.2, 0.5]
191
+ - value: 0.5
192
+ dtype: bfloat16 #Oops accidentally swtich to half precision do this also very important
193
+
194
+ #10. Heal the layers, o_proj and down_proj seems to be the only tensors that determine adaptation to a new architecture, so we can steal them from an already finetuned 15B,
195
+ #this way we don't need to finetune our new frankenmerge at all to have full performance. Why reinvent the wheel?
196
+ #sapphire
197
+ models:
198
+ - model: v000000/HaloMaidRP1_component
199
+ merge_method: slerp
200
+ base_model: ZeusLabs/L3-Aethora-15B-V2
201
+ parameters:
202
+ t:
203
+ - filter: o_proj
204
+ value: 0
205
+ - filter: down_proj
206
+ value: 0
207
+ - value: 1
208
+ dtype: bfloat16
209
+
210
+ #11. Go back to an earlier checkpoint that had interesting results with being very depraved before the blackroot model_stock merge and do the same as (10.) to heal it.
211
+ #ruby
212
+ models:
213
+ - model: v000000/component____HaloMaidRP-V
214
+ merge_method: slerp
215
+ base_model: ZeusLabs/L3-Aethora-15B-V2
216
+ parameters:
217
+ t:
218
+ - filter: o_proj
219
+ value: 0
220
+ - filter: down_proj
221
+ value: 0
222
+ - value: 1
223
+ dtype: bfloat16
224
+
225
+ #12. Then we merge these two together to get a semi-depraved smart model.
226
+ #emerald
227
  slices:
228
  - sources:
229
  - model: v000000/HaloMaidRP-v1.32-15B-Sapphire
 
242
  dtype: bfloat16
243
 
244
  ```
245
+ ```