metric-fix (#3)
Browse files- Added a fix to the metric: corrected indexes mismatch, and added zeromean normalization (2633f6b0f66a8fa4edb6e5a9c77ca55b004ebc71)
- update metric (4a7e4e02fe8c2cbceb48e1c646c4d02996523634)
- update constants (5cd2bb760d54caa704cd189d2a204a6ff9eb31a7)
- Cleaned-up, and added diameter-based cv cost (d7cb5e40aa3a01ee8d5358eca2258e6799b99d41)
- Merge branch 'metric-fix' into pr/1 (4a295c28cfbba070667a9d7edc736fb30c96bd1b)
- tweak docs (57535bbad2d6fc63d5fba90159e1fb47170d42c0)
- tweak docs more (c3c7e12032769b9469ca9e4f9ada6830d219be7f)
Co-authored-by: Dmytro Mishkin <[email protected]>
- hoho/vis.py +3 -2
- hoho/wed.py +72 -19
- requirements.txt +7 -5
- setup.py +1 -1
hoho/vis.py
CHANGED
@@ -133,7 +133,8 @@ def create_image_grid(images, target_length=312, num_per_row=2):
|
|
133 |
return grid_img
|
134 |
|
135 |
|
136 |
-
import matplotlib
|
|
|
137 |
def visualize_depth(depth, min_depth=None, max_depth=None, cmap='rainbow'):
|
138 |
depth = np.array(depth)
|
139 |
|
@@ -148,7 +149,7 @@ def visualize_depth(depth, min_depth=None, max_depth=None, cmap='rainbow'):
|
|
148 |
depth = np.clip(depth, 0, 1)
|
149 |
|
150 |
# Use the matplotlib colormap to convert the depth to an RGB image
|
151 |
-
cmap =
|
152 |
depth_image = (cmap(depth) * 255).astype(np.uint8)
|
153 |
|
154 |
# Convert the depth image to a PIL image
|
|
|
133 |
return grid_img
|
134 |
|
135 |
|
136 |
+
import matplotlib.pyplot as plt
|
137 |
+
|
138 |
def visualize_depth(depth, min_depth=None, max_depth=None, cmap='rainbow'):
|
139 |
depth = np.array(depth)
|
140 |
|
|
|
149 |
depth = np.clip(depth, 0, 1)
|
150 |
|
151 |
# Use the matplotlib colormap to convert the depth to an RGB image
|
152 |
+
cmap = plt.get_cmap(cmap)
|
153 |
depth_image = (cmap(depth) * 255).astype(np.uint8)
|
154 |
|
155 |
# Convert the depth image to a PIL image
|
hoho/wed.py
CHANGED
@@ -2,43 +2,94 @@ from scipy.spatial.distance import cdist
|
|
2 |
from scipy.optimize import linear_sum_assignment
|
3 |
import numpy as np
|
4 |
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
pd_vertices = np.array(pd_vertices)
|
7 |
gt_vertices = np.array(gt_vertices)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
pd_edges = np.array(pd_edges)
|
9 |
-
gt_edges = np.array(gt_edges)
|
10 |
|
11 |
# Step 1: Bipartite Matching
|
12 |
-
|
13 |
-
distances = cdist(pd_vertices, gt_vertices, metric='sqeuclidean')
|
14 |
-
else:
|
15 |
-
distances = cdist(pd_vertices, gt_vertices, metric='euclidean')
|
16 |
-
|
17 |
row_ind, col_ind = linear_sum_assignment(distances)
|
|
|
18 |
|
19 |
# Step 2: Vertex Translation
|
20 |
-
|
21 |
-
if squared:
|
22 |
-
translation_costs = cv * np.sqrt(np.sum(distances[row_ind, col_ind]))
|
23 |
-
else:
|
24 |
-
translation_costs = cv * np.sum(distances[row_ind, col_ind])
|
25 |
|
26 |
# Additional: Vertex Deletion
|
27 |
unmatched_pd_indices = set(range(len(pd_vertices))) - set(row_ind)
|
28 |
-
deletion_costs = cv * len(unmatched_pd_indices)
|
29 |
|
30 |
# Step 3: Vertex Insertion
|
31 |
unmatched_gt_indices = set(range(len(gt_vertices))) - set(col_ind)
|
32 |
-
insertion_costs = cv * len(unmatched_gt_indices)
|
33 |
|
34 |
# Step 4: Edge Deletion and Insertion
|
35 |
-
updated_pd_edges = [(
|
36 |
-
pd_edges_set = set(map(tuple, updated_pd_edges))
|
37 |
-
gt_edges_set = set(map(tuple, gt_edges))
|
|
|
38 |
|
39 |
# Delete edges not in ground truth
|
40 |
edges_to_delete = pd_edges_set - gt_edges_set
|
41 |
-
|
|
|
|
|
|
|
42 |
|
43 |
# Insert missing edges from ground truth
|
44 |
edges_to_insert = gt_edges_set - pd_edges_set
|
@@ -46,9 +97,11 @@ def compute_WED(pd_vertices, pd_edges, gt_vertices, gt_edges, cv=1.0, ce=1.0, no
|
|
46 |
|
47 |
# Step 5: Calculation of WED
|
48 |
WED = translation_costs + deletion_costs + insertion_costs + deletion_edge_costs + insertion_edge_costs
|
|
|
49 |
|
50 |
if normalized:
|
51 |
total_length_of_gt_edges = np.linalg.norm((gt_vertices[gt_edges[:, 0]] - gt_vertices[gt_edges[:, 1]]), axis=1).sum()
|
52 |
WED = WED / total_length_of_gt_edges
|
53 |
-
|
|
|
54 |
return WED
|
|
|
2 |
from scipy.optimize import linear_sum_assignment
|
3 |
import numpy as np
|
4 |
|
5 |
+
|
6 |
+
def preregister_mean_std(verts_to_transform, target_verts, single_scale=True):
|
7 |
+
mu_target = target_verts.mean(axis=0)
|
8 |
+
mu_in = verts_to_transform.mean(axis=0)
|
9 |
+
std_target = np.std(target_verts, axis=0)
|
10 |
+
std_in = np.std(verts_to_transform, axis=0)
|
11 |
+
|
12 |
+
if np.any(std_in == 0):
|
13 |
+
std_in[std_in == 0] = 1
|
14 |
+
if np.any(std_target == 0):
|
15 |
+
std_target[std_target == 0] = 1
|
16 |
+
if np.any(np.isnan(std_in)):
|
17 |
+
std_in[np.isnan(std_in)] = 1
|
18 |
+
if np.any(np.isnan(std_target)):
|
19 |
+
std_target[np.isnan(std_target)] = 1
|
20 |
+
|
21 |
+
if single_scale:
|
22 |
+
std_target = np.linalg.norm(std_target)
|
23 |
+
std_in = np.linalg.norm(std_in)
|
24 |
+
|
25 |
+
transformed_verts = (verts_to_transform - mu_in) / std_in
|
26 |
+
transformed_verts = transformed_verts * std_target + mu_target
|
27 |
+
|
28 |
+
return transformed_verts
|
29 |
+
|
30 |
+
|
31 |
+
def compute_WED(pd_vertices, pd_edges, gt_vertices, gt_edges, cv=-1, ce=1.0, normalized=True, preregister=True, single_scale=True):
|
32 |
+
'''The function computes the Wireframe Edge Distance (WED) between two graphs.
|
33 |
+
pd_vertices: list of predicted vertices
|
34 |
+
pd_edges: list of predicted edges
|
35 |
+
gt_vertices: list of ground truth vertices
|
36 |
+
gt_edges: list of ground truth edges
|
37 |
+
cv: vertex cost (the cost in centimeters of missing a vertex, default is -1, which means 1/4 of the diameter of the ground truth mesh)
|
38 |
+
ce: edge cost (multiplier of the edge length for edge deletion and insertion, default is 1.0)
|
39 |
+
normalized: if True, the WED is normalized by the total length of the ground truth edges
|
40 |
+
preregister: if True, the predicted vertices have their mean and scale matched to the ground truth vertices
|
41 |
+
'''
|
42 |
+
|
43 |
+
# Vertex coordinates are in centimeters. When cv and ce are set to 100.0 and 1.0 respectively,
|
44 |
+
# missing a vertex is equivanlent predicting it 1 meter away from the ground truth vertex.
|
45 |
+
# This is equivalent to setting cv=1 and ce=1 when the vertex coordinates are in meters.
|
46 |
+
# When a negative cv value is set (the default behavior), cv is reset to 1/4 of the diameter of the ground truth wireframe.
|
47 |
+
|
48 |
pd_vertices = np.array(pd_vertices)
|
49 |
gt_vertices = np.array(gt_vertices)
|
50 |
+
|
51 |
+
diameter = cdist(gt_vertices, gt_vertices).max()
|
52 |
+
|
53 |
+
if cv < 0:
|
54 |
+
cv = diameter / 4.0
|
55 |
+
# Cost of addining or deleting a vertex is set to 1/4 of the diameter of the ground truth mesh
|
56 |
+
|
57 |
+
# Step 0: Prenormalize / preregister
|
58 |
+
if preregister:
|
59 |
+
pd_vertices = preregister_mean_std(pd_vertices, gt_vertices, single_scale=single_scale)
|
60 |
+
|
61 |
+
|
62 |
pd_edges = np.array(pd_edges)
|
63 |
+
gt_edges = np.array(gt_edges)
|
64 |
|
65 |
# Step 1: Bipartite Matching
|
66 |
+
distances = cdist(pd_vertices, gt_vertices, metric='euclidean')
|
|
|
|
|
|
|
|
|
67 |
row_ind, col_ind = linear_sum_assignment(distances)
|
68 |
+
|
69 |
|
70 |
# Step 2: Vertex Translation
|
71 |
+
translation_costs = np.sum(distances[row_ind, col_ind])
|
|
|
|
|
|
|
|
|
72 |
|
73 |
# Additional: Vertex Deletion
|
74 |
unmatched_pd_indices = set(range(len(pd_vertices))) - set(row_ind)
|
75 |
+
deletion_costs = cv * len(unmatched_pd_indices)
|
76 |
|
77 |
# Step 3: Vertex Insertion
|
78 |
unmatched_gt_indices = set(range(len(gt_vertices))) - set(col_ind)
|
79 |
+
insertion_costs = cv * len(unmatched_gt_indices)
|
80 |
|
81 |
# Step 4: Edge Deletion and Insertion
|
82 |
+
updated_pd_edges = [(col_ind[np.where(row_ind == edge[0])[0][0]], col_ind[np.where(row_ind == edge[1])[0][0]]) for edge in pd_edges if edge[0] in row_ind and edge[1] in row_ind]
|
83 |
+
pd_edges_set = set(map(tuple, [set(edge) for edge in updated_pd_edges]))
|
84 |
+
gt_edges_set = set(map(tuple, [set(edge) for edge in gt_edges]))
|
85 |
+
|
86 |
|
87 |
# Delete edges not in ground truth
|
88 |
edges_to_delete = pd_edges_set - gt_edges_set
|
89 |
+
|
90 |
+
vert_tf = [np.where(col_ind == v)[0][0] if v in col_ind else 0 for v in range(len(gt_vertices))]
|
91 |
+
deletion_edge_costs = ce * sum(np.linalg.norm(pd_vertices[vert_tf[edge[0]]] - pd_vertices[vert_tf[edge[1]]]) for edge in edges_to_delete)
|
92 |
+
|
93 |
|
94 |
# Insert missing edges from ground truth
|
95 |
edges_to_insert = gt_edges_set - pd_edges_set
|
|
|
97 |
|
98 |
# Step 5: Calculation of WED
|
99 |
WED = translation_costs + deletion_costs + insertion_costs + deletion_edge_costs + insertion_edge_costs
|
100 |
+
|
101 |
|
102 |
if normalized:
|
103 |
total_length_of_gt_edges = np.linalg.norm((gt_vertices[gt_edges[:, 0]] - gt_vertices[gt_edges[:, 1]]), axis=1).sum()
|
104 |
WED = WED / total_length_of_gt_edges
|
105 |
+
|
106 |
+
# print ("Total length", total_length_of_gt_edges)
|
107 |
return WED
|
requirements.txt
CHANGED
@@ -1,8 +1,10 @@
|
|
|
|
|
|
|
|
1 |
numpy
|
2 |
pillow
|
3 |
-
|
4 |
-
trimesh
|
5 |
-
scipy
|
6 |
-
datasets
|
7 |
pycolmap
|
8 |
-
|
|
|
|
|
|
1 |
+
datasets
|
2 |
+
ipywidgets
|
3 |
+
matplotlib
|
4 |
numpy
|
5 |
pillow
|
6 |
+
plotly
|
|
|
|
|
|
|
7 |
pycolmap
|
8 |
+
scipy
|
9 |
+
trimesh
|
10 |
+
webdataset
|
setup.py
CHANGED
@@ -6,7 +6,7 @@ with open('requirements.txt') as f:
|
|
6 |
required = f.read().splitlines()
|
7 |
|
8 |
setup(name='hoho',
|
9 |
-
version='0.0.
|
10 |
description='Tools and utilites for the HoHo Dataset and S23DR Competition',
|
11 |
url='usm3d.github.io',
|
12 |
author='Jack Langerman, Dmytro Mishkin, S23DR Orgainizing Team',
|
|
|
6 |
required = f.read().splitlines()
|
7 |
|
8 |
setup(name='hoho',
|
9 |
+
version='0.0.3',
|
10 |
description='Tools and utilites for the HoHo Dataset and S23DR Competition',
|
11 |
url='usm3d.github.io',
|
12 |
author='Jack Langerman, Dmytro Mishkin, S23DR Orgainizing Team',
|