dmytromishkin
commited on
Commit
·
d7cb5e4
1
Parent(s):
5cd2bb7
Cleaned-up, and added diameter-based cv cost
Browse files- hoho/wed.py +24 -46
hoho/wed.py
CHANGED
@@ -3,12 +3,6 @@ from scipy.optimize import linear_sum_assignment
|
|
3 |
import numpy as np
|
4 |
|
5 |
|
6 |
-
def zeromean_normalize(vertices):
|
7 |
-
vertices = np.array(vertices)
|
8 |
-
vertices = vertices - vertices.mean(axis=0)
|
9 |
-
vertices = vertices / (1e-6 + np.linalg.norm(vertices, axis=1)[:, None]) # project all verts to sphere (not what we meant)
|
10 |
-
return vertices
|
11 |
-
|
12 |
def preregister_mean_std(verts_to_transform, target_verts, single_scale=True):
|
13 |
mu_target = target_verts.mean(axis=0)
|
14 |
mu_in = verts_to_transform.mean(axis=0)
|
@@ -34,52 +28,38 @@ def preregister_mean_std(verts_to_transform, target_verts, single_scale=True):
|
|
34 |
return transformed_verts
|
35 |
|
36 |
|
37 |
-
def compute_WED(pd_vertices, pd_edges, gt_vertices, gt_edges, cv
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
pd_vertices = np.array(pd_vertices)
|
39 |
gt_vertices = np.array(gt_vertices)
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
# Step 0: Prenormalize / preregister
|
42 |
-
if prenorm:
|
43 |
-
pd_vertices = zeromean_normalize(pd_vertices)
|
44 |
-
gt_vertices = zeromean_normalize(gt_vertices)
|
45 |
-
|
46 |
if preregister:
|
47 |
pd_vertices = preregister_mean_std(pd_vertices, gt_vertices, single_scale=single_scale)
|
48 |
|
49 |
|
50 |
pd_edges = np.array(pd_edges)
|
51 |
-
gt_edges = np.array(gt_edges)
|
52 |
-
|
53 |
-
|
54 |
-
# Step 0.5: Register
|
55 |
-
if register:
|
56 |
-
# find the optimal rotation, translation, and scale
|
57 |
-
from scipy.spatial.transform import Rotation as R
|
58 |
-
from scipy.optimize import minimize
|
59 |
-
|
60 |
-
def transform(x, pd_vertices):
|
61 |
-
# x is a 7-element vector, first 3 elements are the rotation vector, next 3 elements are the translation vector, finally scale
|
62 |
-
rotation = R.from_rotvec(x[:3])
|
63 |
-
translation = x[3:6]
|
64 |
-
scale = x[6]
|
65 |
-
return scale * rotation.apply(pd_vertices) + translation
|
66 |
-
|
67 |
-
def cost_function(x, pd_vertices, gt_vertices):
|
68 |
-
pd_vertices_transformed = transform(x, pd_vertices)
|
69 |
-
distances = cdist(pd_vertices_transformed, gt_vertices, metric='euclidean')
|
70 |
-
row_ind, col_ind = linear_sum_assignment(distances)
|
71 |
-
translation_costs = np.sum(distances[row_ind, col_ind])
|
72 |
-
|
73 |
-
return translation_costs
|
74 |
-
|
75 |
-
x0 = np.array([0, 0, 0, 0, 0, 0, 1])
|
76 |
-
# minimize subject to scale > 1e-6
|
77 |
-
# res = minimize(cost_function, x0, args=(pd_vertices, gt_vertices), constraints={'type': 'ineq', 'fun': lambda x: x[6] - 1e-6})
|
78 |
-
res = minimize(cost_function, x0, args=(pd_vertices, gt_vertices), bounds=[(-np.pi, np.pi), (-np.pi, np.pi), (-np.pi, np.pi), (-500, 500), (-500, 500), (-500, 500), (0.1, 3)])
|
79 |
-
# print("scale:", res.x)
|
80 |
-
|
81 |
-
pd_vertices = transform(res.x, pd_vertices)
|
82 |
-
|
83 |
|
84 |
# Step 1: Bipartite Matching
|
85 |
distances = cdist(pd_vertices, gt_vertices, metric='euclidean')
|
@@ -106,7 +86,6 @@ def compute_WED(pd_vertices, pd_edges, gt_vertices, gt_edges, cv=1000.0, ce=1.0,
|
|
106 |
# Delete edges not in ground truth
|
107 |
edges_to_delete = pd_edges_set - gt_edges_set
|
108 |
|
109 |
-
#deletion_edge_costs = ce * sum(np.linalg.norm(pd_vertices[edge[0]] - pd_vertices[edge[1]]) for edge in edges_to_delete)
|
110 |
vert_tf = [np.where(col_ind == v)[0][0] if v in col_ind else 0 for v in range(len(gt_vertices))]
|
111 |
deletion_edge_costs = ce * sum(np.linalg.norm(pd_vertices[vert_tf[edge[0]]] - pd_vertices[vert_tf[edge[1]]]) for edge in edges_to_delete)
|
112 |
|
@@ -117,8 +96,7 @@ def compute_WED(pd_vertices, pd_edges, gt_vertices, gt_edges, cv=1000.0, ce=1.0,
|
|
117 |
|
118 |
# Step 5: Calculation of WED
|
119 |
WED = translation_costs + deletion_costs + insertion_costs + deletion_edge_costs + insertion_edge_costs
|
120 |
-
|
121 |
-
# print(translation_costs, deletion_costs, insertion_costs, deletion_edge_costs, insertion_edge_costs)
|
122 |
|
123 |
if normalized:
|
124 |
total_length_of_gt_edges = np.linalg.norm((gt_vertices[gt_edges[:, 0]] - gt_vertices[gt_edges[:, 1]]), axis=1).sum()
|
|
|
3 |
import numpy as np
|
4 |
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
def preregister_mean_std(verts_to_transform, target_verts, single_scale=True):
|
7 |
mu_target = target_verts.mean(axis=0)
|
8 |
mu_in = verts_to_transform.mean(axis=0)
|
|
|
28 |
return transformed_verts
|
29 |
|
30 |
|
31 |
+
def compute_WED(pd_vertices, pd_edges, gt_vertices, gt_edges, cv=-1, ce=1.0, normalized=True, preregister=True, single_scale=True):
|
32 |
+
'''The function computes the Weighted Edge Distance (WED) between two graphs.
|
33 |
+
pd_vertices: list of predicted vertices
|
34 |
+
pd_edges: list of predicted edges
|
35 |
+
gt_vertices: list of ground truth vertices
|
36 |
+
gt_edges: list of ground truth edges
|
37 |
+
cv: vertex cost
|
38 |
+
ce: edge cost
|
39 |
+
normalized: if True, the WED is normalized by the total length of the ground truth edges
|
40 |
+
preregister: if True, the predicted vertices are pre-registered to the ground truth vertices
|
41 |
+
'''
|
42 |
+
|
43 |
+
# vertex coordinates are in centimeters, so cv and ce are set to 100.0 and 1.0 respectively.
|
44 |
+
# This means the missing a vertex is equivanlent predicting it 1 meters off,
|
45 |
+
# and that is the same as cv and ce equal to 1.0, if GT is in meters
|
46 |
+
|
47 |
pd_vertices = np.array(pd_vertices)
|
48 |
gt_vertices = np.array(gt_vertices)
|
49 |
|
50 |
+
diameter = cdist(gt_vertices, gt_vertices).max()
|
51 |
+
|
52 |
+
if cv < 0:
|
53 |
+
cv = diameter / 4.0
|
54 |
+
# Cost of addining or deleting a vertex is set to 1/4 of the diameter of the ground truth mesh
|
55 |
+
|
56 |
# Step 0: Prenormalize / preregister
|
|
|
|
|
|
|
|
|
57 |
if preregister:
|
58 |
pd_vertices = preregister_mean_std(pd_vertices, gt_vertices, single_scale=single_scale)
|
59 |
|
60 |
|
61 |
pd_edges = np.array(pd_edges)
|
62 |
+
gt_edges = np.array(gt_edges)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
# Step 1: Bipartite Matching
|
65 |
distances = cdist(pd_vertices, gt_vertices, metric='euclidean')
|
|
|
86 |
# Delete edges not in ground truth
|
87 |
edges_to_delete = pd_edges_set - gt_edges_set
|
88 |
|
|
|
89 |
vert_tf = [np.where(col_ind == v)[0][0] if v in col_ind else 0 for v in range(len(gt_vertices))]
|
90 |
deletion_edge_costs = ce * sum(np.linalg.norm(pd_vertices[vert_tf[edge[0]]] - pd_vertices[vert_tf[edge[1]]]) for edge in edges_to_delete)
|
91 |
|
|
|
96 |
|
97 |
# Step 5: Calculation of WED
|
98 |
WED = translation_costs + deletion_costs + insertion_costs + deletion_edge_costs + insertion_edge_costs
|
99 |
+
|
|
|
100 |
|
101 |
if normalized:
|
102 |
total_length_of_gt_edges = np.linalg.norm((gt_vertices[gt_edges[:, 0]] - gt_vertices[gt_edges[:, 1]]), axis=1).sum()
|