segformer-class-classWeights-augmentation

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1855
  • Accuracy: 0.9655
  • F1: 0.9647
  • Precision: 0.9674
  • Recall: 0.9655
  • Learning Rate: 0.0000

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 10
  • eval_batch_size: 10
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 40
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall Rate
No log 0.89 6 0.1113 0.9655 0.9647 0.9674 0.9655 0.0000
0.1153 1.93 13 0.0929 0.9655 0.9647 0.9674 0.9655 0.0000
0.2246 2.96 20 0.1026 0.9655 0.9647 0.9674 0.9655 0.0000
0.2246 4.0 27 0.0391 0.9655 0.9647 0.9674 0.9655 0.0000
0.1433 4.89 33 0.0673 0.9655 0.9647 0.9674 0.9655 0.0000
0.1816 5.93 40 0.0794 0.9655 0.9647 0.9674 0.9655 0.0000
0.1816 6.96 47 0.0687 0.9655 0.9647 0.9674 0.9655 0.0000
0.1448 8.0 54 0.1123 0.9655 0.9647 0.9674 0.9655 0.0000
0.1124 8.89 60 0.1855 0.9655 0.9647 0.9674 0.9655 0.0000

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
43
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for usamaaleem99tech/segformer-class-classWeights-augmentation

Finetuned
(484)
this model

Evaluation results