ROPE IS WRONG
#1
by
Maani
- opened
- README.md +141 -1012
- config.json +2 -4
- generation_config.json +1 -3
- special_tokens_map.json +7 -1
- tokenizer.json +4 -63
- tokenizer_config.json +1 -1
README.md
CHANGED
@@ -1,1070 +1,199 @@
|
|
1 |
---
|
2 |
-
base_model: meta-llama/Llama-3.1-8B-Instruct
|
3 |
-
language:
|
4 |
-
- en
|
5 |
library_name: transformers
|
6 |
-
|
7 |
-
tags:
|
8 |
-
- llama-3
|
9 |
-
- llama
|
10 |
-
- meta
|
11 |
-
- facebook
|
12 |
-
- unsloth
|
13 |
-
- transformers
|
14 |
---
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
-
We have a free Google Colab Tesla T4 notebook for Llama 3.1 (8B) here: https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing
|
19 |
-
|
20 |
-
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/Discord%20button.png" width="200"/>](https://discord.gg/unsloth)
|
21 |
-
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
22 |
-
|
23 |
-
## ✨ Finetune for Free
|
24 |
-
|
25 |
-
All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.
|
26 |
-
|
27 |
-
| Unsloth supports | Free Notebooks | Performance | Memory use |
|
28 |
-
|-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
|
29 |
-
| **Llama-3.2 (3B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less |
|
30 |
-
| **Llama-3.2 (11B vision)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1j0N4XTY1zXXy7mPAhOC1_gMYZ2F2EBlk?usp=sharing) | 2x faster | 60% less |
|
31 |
-
| **Llama-3.1 (8B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less |
|
32 |
-
| **Qwen2 VL (7B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1whHb54GNZMrNxIsi2wm2EY_-Pvo2QyKh?usp=sharing) | 1.8x faster | 60% less |
|
33 |
-
| **Qwen2.5 (7B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Kose-ucXO1IBaZq5BvbwWieuubP7hxvQ?usp=sharing) | 2x faster | 60% less |
|
34 |
-
| **Phi-3.5 (mini)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1lN6hPQveB_mHSnTOYifygFcrO8C1bxq4?usp=sharing) | 2x faster | 50% less |
|
35 |
-
| **Gemma 2 (9B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing) | 2.4x faster | 58% less |
|
36 |
-
| **Mistral (7B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Dyauq4kTZoLewQ1cApceUQVNcnnNTzg_?usp=sharing) | 2.2x faster | 62% less |
|
37 |
-
| **DPO - Zephyr** | [▶️ Start on Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) | 1.9x faster | 19% less |
|
38 |
-
|
39 |
-
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="200"/>](https://docs.unsloth.ai)
|
40 |
-
|
41 |
-
- This [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing) is useful for ShareGPT ChatML / Vicuna templates.
|
42 |
-
- This [text completion notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr.
|
43 |
-
- \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster.
|
44 |
-
|
45 |
-
## Special Thanks
|
46 |
-
A huge thank you to the Meta and Llama team for creating and releasing these models.
|
47 |
-
|
48 |
-
## Model Information
|
49 |
-
|
50 |
-
The Meta Llama 3.1 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction tuned generative models in 8B, 70B and 405B sizes (text in/text out). The Llama 3.1 instruction tuned text only models (8B, 70B, 405B) are optimized for multilingual dialogue use cases and outperform many of the available open source and closed chat models on common industry benchmarks.
|
51 |
-
|
52 |
-
**Model developer**: Meta
|
53 |
-
|
54 |
-
**Model Architecture:** Llama 3.1 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.
|
55 |
-
|
56 |
-
|
57 |
-
<table>
|
58 |
-
<tr>
|
59 |
-
<td>
|
60 |
-
</td>
|
61 |
-
<td><strong>Training Data</strong>
|
62 |
-
</td>
|
63 |
-
<td><strong>Params</strong>
|
64 |
-
</td>
|
65 |
-
<td><strong>Input modalities</strong>
|
66 |
-
</td>
|
67 |
-
<td><strong>Output modalities</strong>
|
68 |
-
</td>
|
69 |
-
<td><strong>Context length</strong>
|
70 |
-
</td>
|
71 |
-
<td><strong>GQA</strong>
|
72 |
-
</td>
|
73 |
-
<td><strong>Token count</strong>
|
74 |
-
</td>
|
75 |
-
<td><strong>Knowledge cutoff</strong>
|
76 |
-
</td>
|
77 |
-
</tr>
|
78 |
-
<tr>
|
79 |
-
<td rowspan="3" >Llama 3.1 (text only)
|
80 |
-
</td>
|
81 |
-
<td rowspan="3" >A new mix of publicly available online data.
|
82 |
-
</td>
|
83 |
-
<td>8B
|
84 |
-
</td>
|
85 |
-
<td>Multilingual Text
|
86 |
-
</td>
|
87 |
-
<td>Multilingual Text and code
|
88 |
-
</td>
|
89 |
-
<td>128k
|
90 |
-
</td>
|
91 |
-
<td>Yes
|
92 |
-
</td>
|
93 |
-
<td rowspan="3" >15T+
|
94 |
-
</td>
|
95 |
-
<td rowspan="3" >December 2023
|
96 |
-
</td>
|
97 |
-
</tr>
|
98 |
-
<tr>
|
99 |
-
<td>70B
|
100 |
-
</td>
|
101 |
-
<td>Multilingual Text
|
102 |
-
</td>
|
103 |
-
<td>Multilingual Text and code
|
104 |
-
</td>
|
105 |
-
<td>128k
|
106 |
-
</td>
|
107 |
-
<td>Yes
|
108 |
-
</td>
|
109 |
-
</tr>
|
110 |
-
<tr>
|
111 |
-
<td>405B
|
112 |
-
</td>
|
113 |
-
<td>Multilingual Text
|
114 |
-
</td>
|
115 |
-
<td>Multilingual Text and code
|
116 |
-
</td>
|
117 |
-
<td>128k
|
118 |
-
</td>
|
119 |
-
<td>Yes
|
120 |
-
</td>
|
121 |
-
</tr>
|
122 |
-
</table>
|
123 |
-
|
124 |
-
|
125 |
-
**Supported languages:** English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai.
|
126 |
-
|
127 |
-
**Llama 3.1 family of models**. Token counts refer to pretraining data only. All model versions use Grouped-Query Attention (GQA) for improved inference scalability.
|
128 |
-
|
129 |
-
**Model Release Date:** July 23, 2024.
|
130 |
-
|
131 |
-
**Status:** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback.
|
132 |
-
|
133 |
-
**License:** A custom commercial license, the Llama 3.1 Community License, is available at: [https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE)
|
134 |
-
|
135 |
-
Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model [README](https://github.com/meta-llama/llama3). For more technical information about generation parameters and recipes for how to use Llama 3.1 in applications, please go [here](https://github.com/meta-llama/llama-recipes).
|
136 |
-
|
137 |
-
|
138 |
-
## Intended Use
|
139 |
-
|
140 |
-
**Intended Use Cases** Llama 3.1 is intended for commercial and research use in multiple languages. Instruction tuned text only models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. The Llama 3.1 model collection also supports the ability to leverage the outputs of its models to improve other models including synthetic data generation and distillation. The Llama 3.1 Community License allows for these use cases.
|
141 |
-
|
142 |
-
**Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3.1 Community License. Use in languages beyond those explicitly referenced as supported in this model card**.
|
143 |
-
|
144 |
-
**<span style="text-decoration:underline;">Note</span>: Llama 3.1 has been trained on a broader collection of languages than the 8 supported languages. Developers may fine-tune Llama 3.1 models for languages beyond the 8 supported languages provided they comply with the Llama 3.1 Community License and the Acceptable Use Policy and in such cases are responsible for ensuring that any uses of Llama 3.1 in additional languages is done in a safe and responsible manner.
|
145 |
-
|
146 |
-
## How to use
|
147 |
-
|
148 |
-
This repository contains two versions of Meta-Llama-3.1-8B-Instruct, for use with transformers and with the original `llama` codebase.
|
149 |
-
|
150 |
-
### Use with transformers
|
151 |
-
|
152 |
-
Starting with `transformers >= 4.43.0` onward, you can run conversational inference using the Transformers `pipeline` abstraction or by leveraging the Auto classes with the `generate()` function.
|
153 |
-
|
154 |
-
Make sure to update your transformers installation via `pip install --upgrade transformers`.
|
155 |
-
|
156 |
-
```python
|
157 |
-
import transformers
|
158 |
-
import torch
|
159 |
-
|
160 |
-
model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
161 |
-
|
162 |
-
pipeline = transformers.pipeline(
|
163 |
-
"text-generation",
|
164 |
-
model=model_id,
|
165 |
-
model_kwargs={"torch_dtype": torch.bfloat16},
|
166 |
-
device_map="auto",
|
167 |
-
)
|
168 |
-
|
169 |
-
messages = [
|
170 |
-
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
171 |
-
{"role": "user", "content": "Who are you?"},
|
172 |
-
]
|
173 |
-
|
174 |
-
outputs = pipeline(
|
175 |
-
messages,
|
176 |
-
max_new_tokens=256,
|
177 |
-
)
|
178 |
-
print(outputs[0]["generated_text"][-1])
|
179 |
-
```
|
180 |
-
|
181 |
-
Note: You can also find detailed recipes on how to use the model locally, with `torch.compile()`, assisted generations, quantised and more at [`huggingface-llama-recipes`](https://github.com/huggingface/huggingface-llama-recipes)
|
182 |
-
|
183 |
-
### Use with `llama`
|
184 |
-
|
185 |
-
Please, follow the instructions in the [repository](https://github.com/meta-llama/llama)
|
186 |
-
|
187 |
-
To download Original checkpoints, see the example command below leveraging `huggingface-cli`:
|
188 |
-
|
189 |
-
```
|
190 |
-
huggingface-cli download meta-llama/Meta-Llama-3.1-8B-Instruct --include "original/*" --local-dir Meta-Llama-3.1-8B-Instruct
|
191 |
-
```
|
192 |
-
|
193 |
-
## Hardware and Software
|
194 |
-
|
195 |
-
**Training Factors** We used custom training libraries, Meta's custom built GPU cluster, and production infrastructure for pretraining. Fine-tuning, annotation, and evaluation were also performed on production infrastructure.
|
196 |
-
|
197 |
-
**Training utilized a cumulative of** 39.3M GPU hours of computation on H100-80GB (TDP of 700W) type hardware, per the table below. Training time is the total GPU time required for training each model and power consumption is the peak power capacity per GPU device used, adjusted for power usage efficiency.
|
198 |
-
|
199 |
-
|
200 |
-
**Training Greenhouse Gas Emissions** Estimated total location-based greenhouse gas emissions were **11,390** tons CO2eq for training. Since 2020, Meta has maintained net zero greenhouse gas emissions in its global operations and matched 100% of its electricity use with renewable energy, therefore the total market-based greenhouse gas emissions for training were 0 tons CO2eq.
|
201 |
-
|
202 |
-
|
203 |
-
<table>
|
204 |
-
<tr>
|
205 |
-
<td>
|
206 |
-
</td>
|
207 |
-
<td><strong>Training Time (GPU hours)</strong>
|
208 |
-
</td>
|
209 |
-
<td><strong>Training Power Consumption (W)</strong>
|
210 |
-
</td>
|
211 |
-
<td><strong>Training Location-Based Greenhouse Gas Emissions</strong>
|
212 |
-
<p>
|
213 |
-
<strong>(tons CO2eq)</strong>
|
214 |
-
</td>
|
215 |
-
<td><strong>Training Market-Based Greenhouse Gas Emissions</strong>
|
216 |
-
<p>
|
217 |
-
<strong>(tons CO2eq)</strong>
|
218 |
-
</td>
|
219 |
-
</tr>
|
220 |
-
<tr>
|
221 |
-
<td>Llama 3.1 8B
|
222 |
-
</td>
|
223 |
-
<td>1.46M
|
224 |
-
</td>
|
225 |
-
<td>700
|
226 |
-
</td>
|
227 |
-
<td>420
|
228 |
-
</td>
|
229 |
-
<td>0
|
230 |
-
</td>
|
231 |
-
</tr>
|
232 |
-
<tr>
|
233 |
-
<td>Llama 3.1 70B
|
234 |
-
</td>
|
235 |
-
<td>7.0M
|
236 |
-
</td>
|
237 |
-
<td>700
|
238 |
-
</td>
|
239 |
-
<td>2,040
|
240 |
-
</td>
|
241 |
-
<td>0
|
242 |
-
</td>
|
243 |
-
</tr>
|
244 |
-
<tr>
|
245 |
-
<td>Llama 3.1 405B
|
246 |
-
</td>
|
247 |
-
<td>30.84M
|
248 |
-
</td>
|
249 |
-
<td>700
|
250 |
-
</td>
|
251 |
-
<td>8,930
|
252 |
-
</td>
|
253 |
-
<td>0
|
254 |
-
</td>
|
255 |
-
</tr>
|
256 |
-
<tr>
|
257 |
-
<td>Total
|
258 |
-
</td>
|
259 |
-
<td>39.3M
|
260 |
-
<td>
|
261 |
-
<ul>
|
262 |
-
|
263 |
-
</ul>
|
264 |
-
</td>
|
265 |
-
<td>11,390
|
266 |
-
</td>
|
267 |
-
<td>0
|
268 |
-
</td>
|
269 |
-
</tr>
|
270 |
-
</table>
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
The methodology used to determine training energy use and greenhouse gas emissions can be found [here](https://arxiv.org/pdf/2204.05149). Since Meta is openly releasing these models, the training energy use and greenhouse gas emissions will not be incurred by others.
|
275 |
-
|
276 |
-
|
277 |
-
## Training Data
|
278 |
-
|
279 |
-
**Overview:** Llama 3.1 was pretrained on ~15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 25M synthetically generated examples.
|
280 |
-
|
281 |
-
**Data Freshness:** The pretraining data has a cutoff of December 2023.
|
282 |
-
|
283 |
-
|
284 |
-
## Benchmark scores
|
285 |
-
|
286 |
-
In this section, we report the results for Llama 3.1 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library.
|
287 |
-
|
288 |
-
### Base pretrained models
|
289 |
-
|
290 |
-
|
291 |
-
<table>
|
292 |
-
<tr>
|
293 |
-
<td><strong>Category</strong>
|
294 |
-
</td>
|
295 |
-
<td><strong>Benchmark</strong>
|
296 |
-
</td>
|
297 |
-
<td><strong># Shots</strong>
|
298 |
-
</td>
|
299 |
-
<td><strong>Metric</strong>
|
300 |
-
</td>
|
301 |
-
<td><strong>Llama 3 8B</strong>
|
302 |
-
</td>
|
303 |
-
<td><strong>Llama 3.1 8B</strong>
|
304 |
-
</td>
|
305 |
-
<td><strong>Llama 3 70B</strong>
|
306 |
-
</td>
|
307 |
-
<td><strong>Llama 3.1 70B</strong>
|
308 |
-
</td>
|
309 |
-
<td><strong>Llama 3.1 405B</strong>
|
310 |
-
</td>
|
311 |
-
</tr>
|
312 |
-
<tr>
|
313 |
-
<td rowspan="7" >General
|
314 |
-
</td>
|
315 |
-
<td>MMLU
|
316 |
-
</td>
|
317 |
-
<td>5
|
318 |
-
</td>
|
319 |
-
<td>macro_avg/acc_char
|
320 |
-
</td>
|
321 |
-
<td>66.7
|
322 |
-
</td>
|
323 |
-
<td>66.7
|
324 |
-
</td>
|
325 |
-
<td>79.5
|
326 |
-
</td>
|
327 |
-
<td>79.3
|
328 |
-
</td>
|
329 |
-
<td>85.2
|
330 |
-
</td>
|
331 |
-
</tr>
|
332 |
-
<tr>
|
333 |
-
<td>MMLU-Pro (CoT)
|
334 |
-
</td>
|
335 |
-
<td>5
|
336 |
-
</td>
|
337 |
-
<td>macro_avg/acc_char
|
338 |
-
</td>
|
339 |
-
<td>36.2
|
340 |
-
</td>
|
341 |
-
<td>37.1
|
342 |
-
</td>
|
343 |
-
<td>55.0
|
344 |
-
</td>
|
345 |
-
<td>53.8
|
346 |
-
</td>
|
347 |
-
<td>61.6
|
348 |
-
</td>
|
349 |
-
</tr>
|
350 |
-
<tr>
|
351 |
-
<td>AGIEval English
|
352 |
-
</td>
|
353 |
-
<td>3-5
|
354 |
-
</td>
|
355 |
-
<td>average/acc_char
|
356 |
-
</td>
|
357 |
-
<td>47.1
|
358 |
-
</td>
|
359 |
-
<td>47.8
|
360 |
-
</td>
|
361 |
-
<td>63.0
|
362 |
-
</td>
|
363 |
-
<td>64.6
|
364 |
-
</td>
|
365 |
-
<td>71.6
|
366 |
-
</td>
|
367 |
-
</tr>
|
368 |
-
<tr>
|
369 |
-
<td>CommonSenseQA
|
370 |
-
</td>
|
371 |
-
<td>7
|
372 |
-
</td>
|
373 |
-
<td>acc_char
|
374 |
-
</td>
|
375 |
-
<td>72.6
|
376 |
-
</td>
|
377 |
-
<td>75.0
|
378 |
-
</td>
|
379 |
-
<td>83.8
|
380 |
-
</td>
|
381 |
-
<td>84.1
|
382 |
-
</td>
|
383 |
-
<td>85.8
|
384 |
-
</td>
|
385 |
-
</tr>
|
386 |
-
<tr>
|
387 |
-
<td>Winogrande
|
388 |
-
</td>
|
389 |
-
<td>5
|
390 |
-
</td>
|
391 |
-
<td>acc_char
|
392 |
-
</td>
|
393 |
-
<td>-
|
394 |
-
</td>
|
395 |
-
<td>60.5
|
396 |
-
</td>
|
397 |
-
<td>-
|
398 |
-
</td>
|
399 |
-
<td>83.3
|
400 |
-
</td>
|
401 |
-
<td>86.7
|
402 |
-
</td>
|
403 |
-
</tr>
|
404 |
-
<tr>
|
405 |
-
<td>BIG-Bench Hard (CoT)
|
406 |
-
</td>
|
407 |
-
<td>3
|
408 |
-
</td>
|
409 |
-
<td>average/em
|
410 |
-
</td>
|
411 |
-
<td>61.1
|
412 |
-
</td>
|
413 |
-
<td>64.2
|
414 |
-
</td>
|
415 |
-
<td>81.3
|
416 |
-
</td>
|
417 |
-
<td>81.6
|
418 |
-
</td>
|
419 |
-
<td>85.9
|
420 |
-
</td>
|
421 |
-
</tr>
|
422 |
-
<tr>
|
423 |
-
<td>ARC-Challenge
|
424 |
-
</td>
|
425 |
-
<td>25
|
426 |
-
</td>
|
427 |
-
<td>acc_char
|
428 |
-
</td>
|
429 |
-
<td>79.4
|
430 |
-
</td>
|
431 |
-
<td>79.7
|
432 |
-
</td>
|
433 |
-
<td>93.1
|
434 |
-
</td>
|
435 |
-
<td>92.9
|
436 |
-
</td>
|
437 |
-
<td>96.1
|
438 |
-
</td>
|
439 |
-
</tr>
|
440 |
-
<tr>
|
441 |
-
<td>Knowledge reasoning
|
442 |
-
</td>
|
443 |
-
<td>TriviaQA-Wiki
|
444 |
-
</td>
|
445 |
-
<td>5
|
446 |
-
</td>
|
447 |
-
<td>em
|
448 |
-
</td>
|
449 |
-
<td>78.5
|
450 |
-
</td>
|
451 |
-
<td>77.6
|
452 |
-
</td>
|
453 |
-
<td>89.7
|
454 |
-
</td>
|
455 |
-
<td>89.8
|
456 |
-
</td>
|
457 |
-
<td>91.8
|
458 |
-
</td>
|
459 |
-
</tr>
|
460 |
-
<tr>
|
461 |
-
<td rowspan="4" >Reading comprehension
|
462 |
-
</td>
|
463 |
-
<td>SQuAD
|
464 |
-
</td>
|
465 |
-
<td>1
|
466 |
-
</td>
|
467 |
-
<td>em
|
468 |
-
</td>
|
469 |
-
<td>76.4
|
470 |
-
</td>
|
471 |
-
<td>77.0
|
472 |
-
</td>
|
473 |
-
<td>85.6
|
474 |
-
</td>
|
475 |
-
<td>81.8
|
476 |
-
</td>
|
477 |
-
<td>89.3
|
478 |
-
</td>
|
479 |
-
</tr>
|
480 |
-
<tr>
|
481 |
-
<td>QuAC (F1)
|
482 |
-
</td>
|
483 |
-
<td>1
|
484 |
-
</td>
|
485 |
-
<td>f1
|
486 |
-
</td>
|
487 |
-
<td>44.4
|
488 |
-
</td>
|
489 |
-
<td>44.9
|
490 |
-
</td>
|
491 |
-
<td>51.1
|
492 |
-
</td>
|
493 |
-
<td>51.1
|
494 |
-
</td>
|
495 |
-
<td>53.6
|
496 |
-
</td>
|
497 |
-
</tr>
|
498 |
-
<tr>
|
499 |
-
<td>BoolQ
|
500 |
-
</td>
|
501 |
-
<td>0
|
502 |
-
</td>
|
503 |
-
<td>acc_char
|
504 |
-
</td>
|
505 |
-
<td>75.7
|
506 |
-
</td>
|
507 |
-
<td>75.0
|
508 |
-
</td>
|
509 |
-
<td>79.0
|
510 |
-
</td>
|
511 |
-
<td>79.4
|
512 |
-
</td>
|
513 |
-
<td>80.0
|
514 |
-
</td>
|
515 |
-
</tr>
|
516 |
-
<tr>
|
517 |
-
<td>DROP (F1)
|
518 |
-
</td>
|
519 |
-
<td>3
|
520 |
-
</td>
|
521 |
-
<td>f1
|
522 |
-
</td>
|
523 |
-
<td>58.4
|
524 |
-
</td>
|
525 |
-
<td>59.5
|
526 |
-
</td>
|
527 |
-
<td>79.7
|
528 |
-
</td>
|
529 |
-
<td>79.6
|
530 |
-
</td>
|
531 |
-
<td>84.8
|
532 |
-
</td>
|
533 |
-
</tr>
|
534 |
-
</table>
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
### Instruction tuned models
|
539 |
-
|
540 |
-
|
541 |
-
<table>
|
542 |
-
<tr>
|
543 |
-
<td><strong>Category</strong>
|
544 |
-
</td>
|
545 |
-
<td><strong>Benchmark</strong>
|
546 |
-
</td>
|
547 |
-
<td><strong># Shots</strong>
|
548 |
-
</td>
|
549 |
-
<td><strong>Metric</strong>
|
550 |
-
</td>
|
551 |
-
<td><strong>Llama 3 8B Instruct</strong>
|
552 |
-
</td>
|
553 |
-
<td><strong>Llama 3.1 8B Instruct</strong>
|
554 |
-
</td>
|
555 |
-
<td><strong>Llama 3 70B Instruct</strong>
|
556 |
-
</td>
|
557 |
-
<td><strong>Llama 3.1 70B Instruct</strong>
|
558 |
-
</td>
|
559 |
-
<td><strong>Llama 3.1 405B Instruct</strong>
|
560 |
-
</td>
|
561 |
-
</tr>
|
562 |
-
<tr>
|
563 |
-
<td rowspan="4" >General
|
564 |
-
</td>
|
565 |
-
<td>MMLU
|
566 |
-
</td>
|
567 |
-
<td>5
|
568 |
-
</td>
|
569 |
-
<td>macro_avg/acc
|
570 |
-
</td>
|
571 |
-
<td>68.5
|
572 |
-
</td>
|
573 |
-
<td>69.4
|
574 |
-
</td>
|
575 |
-
<td>82.0
|
576 |
-
</td>
|
577 |
-
<td>83.6
|
578 |
-
</td>
|
579 |
-
<td>87.3
|
580 |
-
</td>
|
581 |
-
</tr>
|
582 |
-
<tr>
|
583 |
-
<td>MMLU (CoT)
|
584 |
-
</td>
|
585 |
-
<td>0
|
586 |
-
</td>
|
587 |
-
<td>macro_avg/acc
|
588 |
-
</td>
|
589 |
-
<td>65.3
|
590 |
-
</td>
|
591 |
-
<td>73.0
|
592 |
-
</td>
|
593 |
-
<td>80.9
|
594 |
-
</td>
|
595 |
-
<td>86.0
|
596 |
-
</td>
|
597 |
-
<td>88.6
|
598 |
-
</td>
|
599 |
-
</tr>
|
600 |
-
<tr>
|
601 |
-
<td>MMLU-Pro (CoT)
|
602 |
-
</td>
|
603 |
-
<td>5
|
604 |
-
</td>
|
605 |
-
<td>micro_avg/acc_char
|
606 |
-
</td>
|
607 |
-
<td>45.5
|
608 |
-
</td>
|
609 |
-
<td>48.3
|
610 |
-
</td>
|
611 |
-
<td>63.4
|
612 |
-
</td>
|
613 |
-
<td>66.4
|
614 |
-
</td>
|
615 |
-
<td>73.3
|
616 |
-
</td>
|
617 |
-
</tr>
|
618 |
-
<tr>
|
619 |
-
<td>IFEval
|
620 |
-
</td>
|
621 |
-
<td>
|
622 |
-
</td>
|
623 |
-
<td>
|
624 |
-
</td>
|
625 |
-
<td>76.8
|
626 |
-
</td>
|
627 |
-
<td>80.4
|
628 |
-
</td>
|
629 |
-
<td>82.9
|
630 |
-
</td>
|
631 |
-
<td>87.5
|
632 |
-
</td>
|
633 |
-
<td>88.6
|
634 |
-
</td>
|
635 |
-
</tr>
|
636 |
-
<tr>
|
637 |
-
<td rowspan="2" >Reasoning
|
638 |
-
</td>
|
639 |
-
<td>ARC-C
|
640 |
-
</td>
|
641 |
-
<td>0
|
642 |
-
</td>
|
643 |
-
<td>acc
|
644 |
-
</td>
|
645 |
-
<td>82.4
|
646 |
-
</td>
|
647 |
-
<td>83.4
|
648 |
-
</td>
|
649 |
-
<td>94.4
|
650 |
-
</td>
|
651 |
-
<td>94.8
|
652 |
-
</td>
|
653 |
-
<td>96.9
|
654 |
-
</td>
|
655 |
-
</tr>
|
656 |
-
<tr>
|
657 |
-
<td>GPQA
|
658 |
-
</td>
|
659 |
-
<td>0
|
660 |
-
</td>
|
661 |
-
<td>em
|
662 |
-
</td>
|
663 |
-
<td>34.6
|
664 |
-
</td>
|
665 |
-
<td>30.4
|
666 |
-
</td>
|
667 |
-
<td>39.5
|
668 |
-
</td>
|
669 |
-
<td>41.7
|
670 |
-
</td>
|
671 |
-
<td>50.7
|
672 |
-
</td>
|
673 |
-
</tr>
|
674 |
-
<tr>
|
675 |
-
<td rowspan="4" >Code
|
676 |
-
</td>
|
677 |
-
<td>HumanEval
|
678 |
-
</td>
|
679 |
-
<td>0
|
680 |
-
</td>
|
681 |
-
<td>pass@1
|
682 |
-
</td>
|
683 |
-
<td>60.4
|
684 |
-
</td>
|
685 |
-
<td>72.6
|
686 |
-
</td>
|
687 |
-
<td>81.7
|
688 |
-
</td>
|
689 |
-
<td>80.5
|
690 |
-
</td>
|
691 |
-
<td>89.0
|
692 |
-
</td>
|
693 |
-
</tr>
|
694 |
-
<tr>
|
695 |
-
<td>MBPP ++ base version
|
696 |
-
</td>
|
697 |
-
<td>0
|
698 |
-
</td>
|
699 |
-
<td>pass@1
|
700 |
-
</td>
|
701 |
-
<td>70.6
|
702 |
-
</td>
|
703 |
-
<td>72.8
|
704 |
-
</td>
|
705 |
-
<td>82.5
|
706 |
-
</td>
|
707 |
-
<td>86.0
|
708 |
-
</td>
|
709 |
-
<td>88.6
|
710 |
-
</td>
|
711 |
-
</tr>
|
712 |
-
<tr>
|
713 |
-
<td>Multipl-E HumanEval
|
714 |
-
</td>
|
715 |
-
<td>0
|
716 |
-
</td>
|
717 |
-
<td>pass@1
|
718 |
-
</td>
|
719 |
-
<td>-
|
720 |
-
</td>
|
721 |
-
<td>50.8
|
722 |
-
</td>
|
723 |
-
<td>-
|
724 |
-
</td>
|
725 |
-
<td>65.5
|
726 |
-
</td>
|
727 |
-
<td>75.2
|
728 |
-
</td>
|
729 |
-
</tr>
|
730 |
-
<tr>
|
731 |
-
<td>Multipl-E MBPP
|
732 |
-
</td>
|
733 |
-
<td>0
|
734 |
-
</td>
|
735 |
-
<td>pass@1
|
736 |
-
</td>
|
737 |
-
<td>-
|
738 |
-
</td>
|
739 |
-
<td>52.4
|
740 |
-
</td>
|
741 |
-
<td>-
|
742 |
-
</td>
|
743 |
-
<td>62.0
|
744 |
-
</td>
|
745 |
-
<td>65.7
|
746 |
-
</td>
|
747 |
-
</tr>
|
748 |
-
<tr>
|
749 |
-
<td rowspan="2" >Math
|
750 |
-
</td>
|
751 |
-
<td>GSM-8K (CoT)
|
752 |
-
</td>
|
753 |
-
<td>8
|
754 |
-
</td>
|
755 |
-
<td>em_maj1@1
|
756 |
-
</td>
|
757 |
-
<td>80.6
|
758 |
-
</td>
|
759 |
-
<td>84.5
|
760 |
-
</td>
|
761 |
-
<td>93.0
|
762 |
-
</td>
|
763 |
-
<td>95.1
|
764 |
-
</td>
|
765 |
-
<td>96.8
|
766 |
-
</td>
|
767 |
-
</tr>
|
768 |
-
<tr>
|
769 |
-
<td>MATH (CoT)
|
770 |
-
</td>
|
771 |
-
<td>0
|
772 |
-
</td>
|
773 |
-
<td>final_em
|
774 |
-
</td>
|
775 |
-
<td>29.1
|
776 |
-
</td>
|
777 |
-
<td>51.9
|
778 |
-
</td>
|
779 |
-
<td>51.0
|
780 |
-
</td>
|
781 |
-
<td>68.0
|
782 |
-
</td>
|
783 |
-
<td>73.8
|
784 |
-
</td>
|
785 |
-
</tr>
|
786 |
-
<tr>
|
787 |
-
<td rowspan="4" >Tool Use
|
788 |
-
</td>
|
789 |
-
<td>API-Bank
|
790 |
-
</td>
|
791 |
-
<td>0
|
792 |
-
</td>
|
793 |
-
<td>acc
|
794 |
-
</td>
|
795 |
-
<td>48.3
|
796 |
-
</td>
|
797 |
-
<td>82.6
|
798 |
-
</td>
|
799 |
-
<td>85.1
|
800 |
-
</td>
|
801 |
-
<td>90.0
|
802 |
-
</td>
|
803 |
-
<td>92.0
|
804 |
-
</td>
|
805 |
-
</tr>
|
806 |
-
<tr>
|
807 |
-
<td>BFCL
|
808 |
-
</td>
|
809 |
-
<td>0
|
810 |
-
</td>
|
811 |
-
<td>acc
|
812 |
-
</td>
|
813 |
-
<td>60.3
|
814 |
-
</td>
|
815 |
-
<td>76.1
|
816 |
-
</td>
|
817 |
-
<td>83.0
|
818 |
-
</td>
|
819 |
-
<td>84.8
|
820 |
-
</td>
|
821 |
-
<td>88.5
|
822 |
-
</td>
|
823 |
-
</tr>
|
824 |
-
<tr>
|
825 |
-
<td>Gorilla Benchmark API Bench
|
826 |
-
</td>
|
827 |
-
<td>0
|
828 |
-
</td>
|
829 |
-
<td>acc
|
830 |
-
</td>
|
831 |
-
<td>1.7
|
832 |
-
</td>
|
833 |
-
<td>8.2
|
834 |
-
</td>
|
835 |
-
<td>14.7
|
836 |
-
</td>
|
837 |
-
<td>29.7
|
838 |
-
</td>
|
839 |
-
<td>35.3
|
840 |
-
</td>
|
841 |
-
</tr>
|
842 |
-
<tr>
|
843 |
-
<td>Nexus (0-shot)
|
844 |
-
</td>
|
845 |
-
<td>0
|
846 |
-
</td>
|
847 |
-
<td>macro_avg/acc
|
848 |
-
</td>
|
849 |
-
<td>18.1
|
850 |
-
</td>
|
851 |
-
<td>38.5
|
852 |
-
</td>
|
853 |
-
<td>47.8
|
854 |
-
</td>
|
855 |
-
<td>56.7
|
856 |
-
</td>
|
857 |
-
<td>58.7
|
858 |
-
</td>
|
859 |
-
</tr>
|
860 |
-
<tr>
|
861 |
-
<td>Multilingual
|
862 |
-
</td>
|
863 |
-
<td>Multilingual MGSM (CoT)
|
864 |
-
</td>
|
865 |
-
<td>0
|
866 |
-
</td>
|
867 |
-
<td>em
|
868 |
-
</td>
|
869 |
-
<td>-
|
870 |
-
</td>
|
871 |
-
<td>68.9
|
872 |
-
</td>
|
873 |
-
<td>-
|
874 |
-
</td>
|
875 |
-
<td>86.9
|
876 |
-
</td>
|
877 |
-
<td>91.6
|
878 |
-
</td>
|
879 |
-
</tr>
|
880 |
-
</table>
|
881 |
-
|
882 |
-
#### Multilingual benchmarks
|
883 |
-
|
884 |
-
<table>
|
885 |
-
<tr>
|
886 |
-
<td><strong>Category</strong>
|
887 |
-
</td>
|
888 |
-
<td><strong>Benchmark</strong>
|
889 |
-
</td>
|
890 |
-
<td><strong>Language</strong>
|
891 |
-
</td>
|
892 |
-
<td><strong>Llama 3.1 8B</strong>
|
893 |
-
</td>
|
894 |
-
<td><strong>Llama 3.1 70B</strong>
|
895 |
-
</td>
|
896 |
-
<td><strong>Llama 3.1 405B</strong>
|
897 |
-
</td>
|
898 |
-
</tr>
|
899 |
-
<tr>
|
900 |
-
<td rowspan="9" ><strong>General</strong>
|
901 |
-
</td>
|
902 |
-
<td rowspan="9" ><strong>MMLU (5-shot, macro_avg/acc)</strong>
|
903 |
-
</td>
|
904 |
-
<td>Portuguese
|
905 |
-
</td>
|
906 |
-
<td>62.12
|
907 |
-
</td>
|
908 |
-
<td>80.13
|
909 |
-
</td>
|
910 |
-
<td>84.95
|
911 |
-
</td>
|
912 |
-
</tr>
|
913 |
-
<tr>
|
914 |
-
<td>Spanish
|
915 |
-
</td>
|
916 |
-
<td>62.45
|
917 |
-
</td>
|
918 |
-
<td>80.05
|
919 |
-
</td>
|
920 |
-
<td>85.08
|
921 |
-
</td>
|
922 |
-
</tr>
|
923 |
-
<tr>
|
924 |
-
<td>Italian
|
925 |
-
</td>
|
926 |
-
<td>61.63
|
927 |
-
</td>
|
928 |
-
<td>80.4
|
929 |
-
</td>
|
930 |
-
<td>85.04
|
931 |
-
</td>
|
932 |
-
</tr>
|
933 |
-
<tr>
|
934 |
-
<td>German
|
935 |
-
</td>
|
936 |
-
<td>60.59
|
937 |
-
</td>
|
938 |
-
<td>79.27
|
939 |
-
</td>
|
940 |
-
<td>84.36
|
941 |
-
</td>
|
942 |
-
</tr>
|
943 |
-
<tr>
|
944 |
-
<td>French
|
945 |
-
</td>
|
946 |
-
<td>62.34
|
947 |
-
</td>
|
948 |
-
<td>79.82
|
949 |
-
</td>
|
950 |
-
<td>84.66
|
951 |
-
</td>
|
952 |
-
</tr>
|
953 |
-
<tr>
|
954 |
-
<td>Hindi
|
955 |
-
</td>
|
956 |
-
<td>50.88
|
957 |
-
</td>
|
958 |
-
<td>74.52
|
959 |
-
</td>
|
960 |
-
<td>80.31
|
961 |
-
</td>
|
962 |
-
</tr>
|
963 |
-
<tr>
|
964 |
-
<td>Thai
|
965 |
-
</td>
|
966 |
-
<td>50.32
|
967 |
-
</td>
|
968 |
-
<td>72.95
|
969 |
-
</td>
|
970 |
-
<td>78.21
|
971 |
-
</td>
|
972 |
-
</tr>
|
973 |
-
</table>
|
974 |
|
|
|
975 |
|
976 |
|
977 |
-
## Responsibility & Safety
|
978 |
|
979 |
-
|
980 |
|
|
|
981 |
|
|
|
982 |
|
983 |
-
|
984 |
-
* Protect developers against adversarial users aiming to exploit Llama capabilities to potentially cause harm.
|
985 |
-
* Provide protections for the community to help prevent the misuse of our models.
|
986 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
987 |
|
988 |
-
###
|
989 |
|
990 |
-
|
991 |
|
|
|
|
|
|
|
992 |
|
993 |
-
|
994 |
|
995 |
-
|
996 |
|
997 |
-
|
998 |
|
999 |
-
|
1000 |
|
1001 |
-
|
1002 |
|
1003 |
-
|
1004 |
|
|
|
1005 |
|
1006 |
-
|
1007 |
|
1008 |
-
|
1009 |
|
1010 |
-
|
1011 |
|
|
|
1012 |
|
1013 |
-
|
1014 |
|
1015 |
-
|
1016 |
|
1017 |
-
|
1018 |
|
1019 |
-
|
1020 |
|
|
|
1021 |
|
1022 |
-
|
1023 |
|
1024 |
-
|
1025 |
|
1026 |
-
|
1027 |
|
1028 |
-
|
1029 |
|
1030 |
-
|
1031 |
|
1032 |
-
|
1033 |
|
|
|
1034 |
|
1035 |
-
|
1036 |
|
1037 |
-
|
1038 |
|
1039 |
-
|
1040 |
|
1041 |
-
|
1042 |
|
|
|
1043 |
|
1044 |
-
**2. Child Safety**
|
1045 |
|
1046 |
-
|
1047 |
|
1048 |
-
**
|
1049 |
|
1050 |
-
|
1051 |
|
1052 |
-
|
1053 |
|
1054 |
-
|
1055 |
|
|
|
1056 |
|
1057 |
-
|
1058 |
|
1059 |
-
|
1060 |
|
1061 |
-
|
1062 |
|
1063 |
-
|
1064 |
|
|
|
1065 |
|
1066 |
-
|
1067 |
|
1068 |
-
|
1069 |
|
1070 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
|
|
|
|
|
|
2 |
library_name: transformers
|
3 |
+
tags: []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
+
# Model Card for Model ID
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
|
10 |
|
|
|
11 |
|
12 |
+
## Model Details
|
13 |
|
14 |
+
### Model Description
|
15 |
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
|
|
|
|
19 |
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
+
### Model Sources [optional]
|
29 |
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
+
## Uses
|
37 |
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
|
40 |
+
### Direct Use
|
41 |
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
|
44 |
+
[More Information Needed]
|
45 |
|
46 |
+
### Downstream Use [optional]
|
47 |
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
|
50 |
+
[More Information Needed]
|
51 |
|
52 |
+
### Out-of-Scope Use
|
53 |
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
|
56 |
+
[More Information Needed]
|
57 |
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
|
62 |
+
[More Information Needed]
|
63 |
|
64 |
+
### Recommendations
|
65 |
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
|
70 |
+
## How to Get Started with the Model
|
71 |
|
72 |
+
Use the code below to get started with the model.
|
73 |
|
74 |
+
[More Information Needed]
|
75 |
|
76 |
+
## Training Details
|
77 |
|
78 |
+
### Training Data
|
79 |
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
|
82 |
+
[More Information Needed]
|
83 |
|
84 |
+
### Training Procedure
|
85 |
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
|
88 |
+
#### Preprocessing [optional]
|
89 |
|
90 |
+
[More Information Needed]
|
91 |
|
|
|
92 |
|
93 |
+
#### Training Hyperparameters
|
94 |
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
|
101 |
+
[More Information Needed]
|
102 |
|
103 |
+
## Evaluation
|
104 |
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
|
109 |
+
#### Testing Data
|
110 |
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
|
113 |
+
[More Information Needed]
|
114 |
|
115 |
+
#### Factors
|
116 |
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"architectures": [
|
4 |
"LlamaForCausalLM"
|
5 |
],
|
@@ -21,7 +21,6 @@
|
|
21 |
"num_attention_heads": 32,
|
22 |
"num_hidden_layers": 32,
|
23 |
"num_key_value_heads": 8,
|
24 |
-
"pad_token_id": 128004,
|
25 |
"pretraining_tp": 1,
|
26 |
"quantization_config": {
|
27 |
"_load_in_4bit": true,
|
@@ -49,8 +48,7 @@
|
|
49 |
"rope_theta": 500000.0,
|
50 |
"tie_word_embeddings": false,
|
51 |
"torch_dtype": "bfloat16",
|
52 |
-
"transformers_version": "4.
|
53 |
-
"unsloth_version": "2024.9",
|
54 |
"use_cache": true,
|
55 |
"vocab_size": 128256
|
56 |
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
3 |
"architectures": [
|
4 |
"LlamaForCausalLM"
|
5 |
],
|
|
|
21 |
"num_attention_heads": 32,
|
22 |
"num_hidden_layers": 32,
|
23 |
"num_key_value_heads": 8,
|
|
|
24 |
"pretraining_tp": 1,
|
25 |
"quantization_config": {
|
26 |
"_load_in_4bit": true,
|
|
|
48 |
"rope_theta": 500000.0,
|
49 |
"tie_word_embeddings": false,
|
50 |
"torch_dtype": "bfloat16",
|
51 |
+
"transformers_version": "4.43.1",
|
|
|
52 |
"use_cache": true,
|
53 |
"vocab_size": 128256
|
54 |
}
|
generation_config.json
CHANGED
@@ -6,9 +6,7 @@
|
|
6 |
128008,
|
7 |
128009
|
8 |
],
|
9 |
-
"max_length": 131072,
|
10 |
-
"pad_token_id": 128004,
|
11 |
"temperature": 0.6,
|
12 |
"top_p": 0.9,
|
13 |
-
"transformers_version": "4.
|
14 |
}
|
|
|
6 |
128008,
|
7 |
128009
|
8 |
],
|
|
|
|
|
9 |
"temperature": 0.6,
|
10 |
"top_p": 0.9,
|
11 |
+
"transformers_version": "4.43.1"
|
12 |
}
|
special_tokens_map.json
CHANGED
@@ -13,5 +13,11 @@
|
|
13 |
"rstrip": false,
|
14 |
"single_word": false
|
15 |
},
|
16 |
-
"pad_token":
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
}
|
|
|
13 |
"rstrip": false,
|
14 |
"single_word": false
|
15 |
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|finetune_right_pad_id|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
}
|
tokenizer.json
CHANGED
@@ -2329,69 +2329,10 @@
|
|
2329 |
]
|
2330 |
},
|
2331 |
"post_processor": {
|
2332 |
-
"type": "
|
2333 |
-
"
|
2334 |
-
|
2335 |
-
|
2336 |
-
"add_prefix_space": true,
|
2337 |
-
"trim_offsets": false,
|
2338 |
-
"use_regex": true
|
2339 |
-
},
|
2340 |
-
{
|
2341 |
-
"type": "TemplateProcessing",
|
2342 |
-
"single": [
|
2343 |
-
{
|
2344 |
-
"SpecialToken": {
|
2345 |
-
"id": "<|begin_of_text|>",
|
2346 |
-
"type_id": 0
|
2347 |
-
}
|
2348 |
-
},
|
2349 |
-
{
|
2350 |
-
"Sequence": {
|
2351 |
-
"id": "A",
|
2352 |
-
"type_id": 0
|
2353 |
-
}
|
2354 |
-
}
|
2355 |
-
],
|
2356 |
-
"pair": [
|
2357 |
-
{
|
2358 |
-
"SpecialToken": {
|
2359 |
-
"id": "<|begin_of_text|>",
|
2360 |
-
"type_id": 0
|
2361 |
-
}
|
2362 |
-
},
|
2363 |
-
{
|
2364 |
-
"Sequence": {
|
2365 |
-
"id": "A",
|
2366 |
-
"type_id": 0
|
2367 |
-
}
|
2368 |
-
},
|
2369 |
-
{
|
2370 |
-
"SpecialToken": {
|
2371 |
-
"id": "<|begin_of_text|>",
|
2372 |
-
"type_id": 1
|
2373 |
-
}
|
2374 |
-
},
|
2375 |
-
{
|
2376 |
-
"Sequence": {
|
2377 |
-
"id": "B",
|
2378 |
-
"type_id": 1
|
2379 |
-
}
|
2380 |
-
}
|
2381 |
-
],
|
2382 |
-
"special_tokens": {
|
2383 |
-
"<|begin_of_text|>": {
|
2384 |
-
"id": "<|begin_of_text|>",
|
2385 |
-
"ids": [
|
2386 |
-
128000
|
2387 |
-
],
|
2388 |
-
"tokens": [
|
2389 |
-
"<|begin_of_text|>"
|
2390 |
-
]
|
2391 |
-
}
|
2392 |
-
}
|
2393 |
-
}
|
2394 |
-
]
|
2395 |
},
|
2396 |
"decoder": {
|
2397 |
"type": "ByteLevel",
|
|
|
2329 |
]
|
2330 |
},
|
2331 |
"post_processor": {
|
2332 |
+
"type": "ByteLevel",
|
2333 |
+
"add_prefix_space": true,
|
2334 |
+
"trim_offsets": false,
|
2335 |
+
"use_regex": true
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2336 |
},
|
2337 |
"decoder": {
|
2338 |
"type": "ByteLevel",
|
tokenizer_config.json
CHANGED
@@ -2050,7 +2050,7 @@
|
|
2050 |
}
|
2051 |
},
|
2052 |
"bos_token": "<|begin_of_text|>",
|
2053 |
-
"chat_template": "{
|
2054 |
"clean_up_tokenization_spaces": true,
|
2055 |
"eos_token": "<|eot_id|>",
|
2056 |
"model_input_names": [
|
|
|
2050 |
}
|
2051 |
},
|
2052 |
"bos_token": "<|begin_of_text|>",
|
2053 |
+
"chat_template": "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}",
|
2054 |
"clean_up_tokenization_spaces": true,
|
2055 |
"eos_token": "<|eot_id|>",
|
2056 |
"model_input_names": [
|