uner_slo_snk / README.md
Shuheng Liu
Upload model
e0a344c
metadata
license: mit
base_model: xlm-roberta-large
tags:
  - generated_from_trainer
datasets:
  - uner_slo_snk
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: uner_slo_snk
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: uner_slo_snk
          type: uner_slo_snk
          config: default
          split: validation
          args: default
        metrics:
          - name: Precision
            type: precision
            value: 0.808972503617945
          - name: Recall
            type: recall
            value: 0.8789308176100629
          - name: F1
            type: f1
            value: 0.8425018839487566
          - name: Accuracy
            type: accuracy
            value: 0.9833503494855886

uner_slo_snk

This model is a fine-tuned version of xlm-roberta-large on the uner_slo_snk dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0903
  • Precision: 0.8090
  • Recall: 0.8789
  • F1: 0.8425
  • Accuracy: 0.9834

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5.0

Training results

Framework versions

  • Transformers 4.31.0
  • Pytorch 1.10.1+cu113
  • Datasets 2.14.4
  • Tokenizers 0.13.3