|
|
|
--- |
|
tags: |
|
- yolov5 |
|
- yolo |
|
- vision |
|
- object-detection |
|
- pytorch |
|
library_name: yolov5 |
|
library_version: 7.0.7 |
|
inference: false |
|
|
|
model-index: |
|
- name: uisikdag/taskagitmakas |
|
results: |
|
- task: |
|
type: object-detection |
|
|
|
metrics: |
|
- type: precision |
|
value: 0.966445241976421 |
|
name: [email protected] |
|
--- |
|
|
|
<div align="center"> |
|
<img width="640" alt="uisikdag/taskagitmakas" src="https://huggingface.co/uisikdag/taskagitmakas/resolve/main/sample_visuals.jpg"> |
|
The dataset can be found at<br> |
|
<a href="https://universe.roboflow.com/team-roboflow/rock-paper-scissors-detection">Link</a> |
|
</div> |
|
|
|
|
|
|
|
### How to use |
|
|
|
- Install [yolov5](https://github.com/fcakyon/yolov5-pip): |
|
|
|
```bash |
|
pip install -U yolov5 |
|
``` |
|
|
|
- Load model and perform prediction: |
|
|
|
```python |
|
import yolov5 |
|
|
|
# load model |
|
model = yolov5.load('uisikdag/taskagitmakas') |
|
|
|
# set model parameters |
|
model.conf = 0.25 # NMS confidence threshold |
|
model.iou = 0.45 # NMS IoU threshold |
|
model.agnostic = False # NMS class-agnostic |
|
model.multi_label = False # NMS multiple labels per box |
|
model.max_det = 1000 # maximum number of detections per image |
|
|
|
# set image |
|
img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg' |
|
|
|
# perform inference |
|
results = model(img, size=640) |
|
|
|
# inference with test time augmentation |
|
results = model(img, augment=True) |
|
|
|
# parse results |
|
predictions = results.pred[0] |
|
boxes = predictions[:, :4] # x1, y1, x2, y2 |
|
scores = predictions[:, 4] |
|
categories = predictions[:, 5] |
|
|
|
# show detection bounding boxes on image |
|
results.show() |
|
|
|
# save results into "results/" folder |
|
results.save(save_dir='results/') |
|
``` |
|
|
|
- Finetune the model on your custom dataset: |
|
|
|
```bash |
|
yolov5 train --data data.yaml --img 640 --batch 16 --weights uisikdag/taskagitmakas --epochs 10 |
|
``` |
|
|
|
**More models available at: [awesome-yolov5-models](https://github.com/keremberke/awesome-yolov5-models)** |
|
|