Generated from Trainer
Eval Results

electra-adapter-finetuned-xe_ey_fae

This model is a fine-tuned version of google/electra-base-generator on the datasets/all_binary_and_xe_ey_fae_counterfactual dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0392
  • Accuracy: 0.6258

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 100
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.9488 0.06 500 3.1500 0.5509
2.942 0.13 1000 2.5844 0.5680
2.6751 0.19 1500 2.4443 0.5790
2.582 0.26 2000 2.3701 0.5869
2.5267 0.32 2500 2.3097 0.5937
2.4722 0.39 3000 2.2695 0.5986
2.4289 0.45 3500 2.2329 0.6024
2.404 0.52 4000 2.2063 0.6055
2.3826 0.58 4500 2.1840 0.6087
2.3633 0.64 5000 2.1646 0.6109
2.3425 0.71 5500 2.1557 0.6121
2.333 0.77 6000 2.1350 0.6141
2.311 0.84 6500 2.1292 0.6152
2.3014 0.9 7000 2.1182 0.6166
2.2974 0.97 7500 2.1121 0.6170
2.2866 1.03 8000 2.1079 0.6173
2.2675 1.1 8500 2.0940 0.6192
2.2789 1.16 9000 2.0882 0.6201
2.2684 1.22 9500 2.0873 0.6200
2.2608 1.29 10000 2.0796 0.6209
2.2478 1.35 10500 2.0827 0.6204
2.2524 1.42 11000 2.0741 0.6215
2.2502 1.48 11500 2.0685 0.6220
2.243 1.55 12000 2.0665 0.6228
2.2417 1.61 12500 2.0632 0.6229
2.2398 1.68 13000 2.0593 0.6232
2.2233 1.74 13500 2.0600 0.6232
2.2277 1.8 14000 2.0535 0.6236
2.2344 1.87 14500 2.0485 0.6248
2.2274 1.93 15000 2.0507 0.6245
2.2212 2.0 15500 2.0428 0.6256
2.214 2.06 16000 2.0464 0.6244
2.2104 2.13 16500 2.0477 0.6250
2.2185 2.19 17000 2.0397 0.6257
2.2157 2.26 17500 2.0419 0.6257
2.2128 2.32 18000 2.0439 0.6255
2.2154 2.38 18500 2.0372 0.6259
2.2099 2.45 19000 2.0337 0.6263
2.2045 2.51 19500 2.0396 0.6259
2.2138 2.58 20000 2.0390 0.6262
2.2103 2.64 20500 2.0339 0.6263

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for ucla-nb-project/electra-adapter

Finetuned
(23)
this model

Evaluation results

  • Accuracy on datasets/all_binary_and_xe_ey_fae_counterfactual
    self-reported
    0.626