bart-base-finetuned-xe_ey_fae

This model is a fine-tuned version of facebook/bart-base on the datasets/all_binary_and_xe_ey_fae_counterfactual dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3945
  • Accuracy: 0.7180

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 100
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
5.4226 0.06 500 3.8138 0.3628
4.0408 0.12 1000 3.0576 0.4630
3.4979 0.18 1500 2.7016 0.5133
3.1691 0.24 2000 2.4880 0.5431
2.9564 0.3 2500 2.3309 0.5644
2.8078 0.35 3000 2.2320 0.5792
2.6741 0.41 3500 2.1506 0.5924
2.5323 0.47 4000 1.9846 0.6176
2.3678 0.53 4500 1.8813 0.6375
2.25 0.59 5000 1.8100 0.6497
2.1795 0.65 5500 1.7632 0.6579
2.1203 0.71 6000 1.7238 0.6646
2.0764 0.77 6500 1.6856 0.6713
2.026 0.83 7000 1.6569 0.6760
1.9942 0.89 7500 1.6309 0.6803
1.9665 0.95 8000 1.6122 0.6836
1.9395 1.0 8500 1.5913 0.6866
1.9155 1.06 9000 1.5758 0.6895
1.8828 1.12 9500 1.5607 0.6918
1.8721 1.18 10000 1.5422 0.6948
1.8474 1.24 10500 1.5320 0.6964
1.8293 1.3 11000 1.5214 0.6978
1.8129 1.36 11500 1.5102 0.6998
1.8148 1.42 12000 1.5010 0.7013
1.7903 1.48 12500 1.4844 0.7038
1.7815 1.54 13000 1.4823 0.7039
1.7637 1.6 13500 1.4746 0.7052
1.7623 1.66 14000 1.4701 0.7061
1.7402 1.71 14500 1.4598 0.7076
1.7376 1.77 15000 1.4519 0.7090
1.7287 1.83 15500 1.4501 0.7101
1.7273 1.89 16000 1.4409 0.7107
1.7119 1.95 16500 1.4314 0.7125
1.7098 2.01 17000 1.4269 0.7129
1.6978 2.07 17500 1.4275 0.7132
1.698 2.13 18000 1.4218 0.7140
1.6837 2.19 18500 1.4151 0.7147
1.6908 2.25 19000 1.4137 0.7149
1.6902 2.31 19500 1.4085 0.7161
1.6741 2.36 20000 1.4121 0.7154
1.6823 2.42 20500 1.4037 0.7165
1.6692 2.48 21000 1.4039 0.7164
1.6669 2.54 21500 1.4015 0.7172
1.6613 2.6 22000 1.3979 0.7179
1.664 2.66 22500 1.3960 0.7180
1.6615 2.72 23000 1.4012 0.7172
1.6627 2.78 23500 1.3974 0.7178
1.6489 2.84 24000 1.3948 0.7182
1.6429 2.9 24500 1.3921 0.7184
1.6477 2.96 25000 1.3910 0.7182

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2
Downloads last month
22
Safetensors
Model size
139M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ucla-nb-project/bart-finetuned

Base model

facebook/bart-base
Finetuned
(369)
this model

Evaluation results

  • Accuracy on datasets/all_binary_and_xe_ey_fae_counterfactual
    self-reported
    0.718