Visualize in Weights & Biases

long-t5-tglobal-base

This model is a fine-tuned version of google/long-t5-tglobal-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9401
  • Rouge1: 0.1934
  • Rouge2: 0.0269
  • Rougel: 0.1151

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 8
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • total_eval_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 13

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel
1.5731 0.9996 600 1.9730 0.1342 0.0151 0.0912
1.3694 1.9996 1200 1.9623 0.1371 0.0175 0.0909
1.9561 2.9992 1800 1.9565 0.1423 0.0178 0.0928
1.0882 3.9996 2400 1.9548 0.1417 0.0186 0.0900
1.4872 4.9992 3000 1.9412 0.1581 0.0212 0.1006
1.4126 5.9988 3600 1.9486 0.1589 0.0188 0.0986
1.1634 7.0 4201 1.9464 0.1756 0.0229 0.1046
0.9541 7.9996 4801 1.9401 0.1791 0.0243 0.1078
0.9153 8.9975 5400 1.9401 0.1934 0.0269 0.1151

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.2.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
120
Safetensors
Model size
248M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ubaada/long-t5-tglobal-base

Finetuned
(20)
this model