lmind_nq_train6000_eval6489_v1_recite_qa_v3_Qwen_Qwen1.5-4B_3e-4_lora2

This model is a fine-tuned version of Qwen/Qwen1.5-4B on the tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4311
  • Accuracy: 0.7981

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 1
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.7637 1.0 529 1.4995 0.6288
1.3986 2.0 1058 1.1711 0.6720
0.9515 3.0 1587 0.8766 0.7148
0.642 4.0 2116 0.6720 0.7478
0.4362 5.0 2645 0.5458 0.7697
0.3201 6.0 3174 0.4751 0.7823
0.2652 7.0 3703 0.4510 0.7887
0.2263 8.0 4232 0.4372 0.7914
0.2035 9.0 4761 0.4335 0.7940
0.1913 10.0 5290 0.4322 0.7950
0.188 11.0 5819 0.4379 0.7945
0.1777 12.0 6348 0.4279 0.7957
0.1723 13.0 6877 0.4326 0.7956
0.1767 14.0 7406 0.4329 0.7967
0.1666 15.0 7935 0.4396 0.7962
0.1642 16.0 8464 0.4391 0.7965
0.1575 17.0 8993 0.4405 0.7967
0.1634 18.0 9522 0.4265 0.7976
0.1593 19.0 10051 0.4323 0.7978
0.153 20.0 10580 0.4311 0.7981

Framework versions

  • PEFT 0.5.0
  • Transformers 4.40.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3_Qwen_Qwen1.5-4B_3e-4_lora2

Base model

Qwen/Qwen1.5-4B
Adapter
(272)
this model

Dataset used to train tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3_Qwen_Qwen1.5-4B_3e-4_lora2

Evaluation results

  • Accuracy on tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3
    self-reported
    0.798