lmind_nq_train6000_eval6489_v1_docidx_v3_Qwen_Qwen1.5-4B_lora2

This model is a fine-tuned version of Qwen/Qwen1.5-4B on the tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3 dataset. It achieves the following results on the evaluation set:

  • Loss: 5.3392
  • Accuracy: 0.4286

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Accuracy Validation Loss
1.9569 0.9985 341 0.4736 3.0300
1.8799 2.0 683 0.468 3.0993
1.7649 2.9985 1024 0.4650 3.2750
1.6077 4.0 1366 0.4625 3.4406
1.4321 4.9985 1707 0.4586 3.6500
1.2382 6.0 2049 0.4562 3.8598
1.0525 6.9985 2390 0.4541 4.0638
0.8607 8.0 2732 0.4515 4.2389
0.7099 8.9985 3073 0.4516 4.3484
0.5823 9.9854 3410 0.4488 4.5794
0.4641 10.9985 3751 4.7090 0.4495
0.3755 12.0 4093 4.9454 0.4354
0.3235 12.9985 4434 5.0624 0.4379
0.2691 14.0 4776 5.0957 0.4345
0.2394 14.9985 5117 5.1831 0.4368
0.2112 16.0 5459 5.3223 0.4326
0.1994 16.9985 5800 5.3839 0.4301
0.1834 18.0 6142 5.4236 0.4286
0.1709 18.9985 6483 5.4840 0.4291
0.166 19.9854 6820 5.3392 0.4286

Framework versions

  • PEFT 0.5.0
  • Transformers 4.40.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
1
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3_Qwen_Qwen1.5-4B_lora2

Base model

Qwen/Qwen1.5-4B
Adapter
(272)
this model

Dataset used to train tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3_Qwen_Qwen1.5-4B_lora2

Evaluation results

  • Accuracy on tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3
    self-reported
    0.429