lmind_nq_train6000_eval6489_v1_docidx_v3_5e-4_lora2

This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3 dataset. It achieves the following results on the evaluation set:

  • Loss: 8.0353
  • Accuracy: 0.1945

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 50.0

Training results

Training Loss Epoch Step Accuracy Validation Loss
1.3903 1.0 341 0.4564 3.9959
1.2 2.0 683 0.4396 4.5103
0.9155 3.0 1024 0.4285 4.8751
0.6446 4.0 1366 0.4326 4.8178
0.455 5.0 1707 0.4404 4.9434
0.3104 6.0 2049 0.4313 5.2226
0.2187 7.0 2390 0.4296 5.1633
0.1903 8.0 2732 0.4377 5.0743
0.1639 9.0 3073 0.4339 5.2491
0.1685 10.0 3415 0.4356 5.1677
0.1575 11.0 3756 0.4358 5.0421
0.151 12.0 4098 0.4338 5.1801
0.1586 13.0 4439 0.4347 5.2149
0.1492 14.0 4781 0.4356 5.1413
0.1539 15.0 5122 0.4309 5.2818
0.1472 16.0 5464 0.4372 5.0858
0.1503 17.0 5805 0.4341 5.1719
0.1449 18.0 6147 0.4301 5.3105
0.1384 19.0 6488 0.4263 5.2427
0.1472 20.0 6830 0.4309 5.2501
0.1389 21.0 7171 0.4309 5.0945
0.1456 22.0 7513 0.4327 5.2462
0.1398 23.0 7854 0.428 5.4476
0.1342 24.0 8196 0.4322 5.2605
0.1414 25.0 8537 0.4284 5.3590
0.1364 26.0 8879 0.4277 5.4423
0.1427 27.0 9220 0.4242 5.5243
0.1351 28.0 9562 0.4295 5.4508
0.1412 29.0 9903 0.4302 5.3767
0.1369 30.0 10245 0.4257 5.4378
0.1332 31.0 10586 0.4288 5.5004
0.14 32.0 10928 0.4261 5.6715
0.1336 33.0 11269 0.4268 5.5130
0.1412 34.0 11611 0.4266 5.5420
0.1357 35.0 11952 0.4182 5.6517
0.1363 36.0 12294 0.4208 5.4598
0.134 37.0 12635 0.4221 5.6220
0.1255 38.0 12977 0.4227 5.6988
0.1303 39.0 13318 0.4252 5.5511
0.2073 40.0 13660 0.4109 5.6976
0.1609 41.0 14001 0.4095 5.6908
0.1384 42.0 14343 0.4166 5.7460
0.1401 43.0 14684 0.4145 5.6377
0.1535 44.0 15026 0.4209 5.5295
0.1542 45.0 15367 0.2157 7.6505
7.7307 46.0 15709 0.2470 6.9279
7.3843 47.0 16050 0.1716 8.9680
8.5059 48.0 16392 0.1716 8.8324
7.9257 49.0 16733 0.1924 7.8902
7.855 49.93 17050 0.1945 8.0353

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.14.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3_5e-4_lora2

Finetuned
(669)
this model

Dataset used to train tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3_5e-4_lora2

Evaluation results

  • Accuracy on tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3
    self-reported
    0.194