IndicTTS-Malayalam / src /inference.py
trysem's picture
Upload 14 files
a920b41 verified
import io
import re
import base64
import numpy as np
import traceback
from typing import Union
from TTS.utils.synthesizer import Synthesizer
from aksharamukha.transliterate import process as aksharamukha_xlit
from scipy.io.wavfile import write as scipy_wav_write
import nltk
import pysbd
from .models.common import Language
from .models.request import TTSRequest
from .models.response import AudioFile, AudioConfig, TTSResponse, TTSFailureResponse
from .utils.text import TextNormalizer
from .utils.paragraph_handler import ParagraphHandler
from src.postprocessor import PostProcessor
class TextToSpeechEngine:
def __init__(
self,
models: dict,
allow_transliteration: bool = True,
enable_denoiser: bool = True,
):
self.models = models
# TODO: Ability to instantiate models by accepting standard paths or auto-downloading
code_mixed_found = False
if allow_transliteration:
# Initialize Indic-Xlit models for the languages corresponding to TTS models
from ai4bharat.transliteration import XlitEngine
xlit_langs = set()
for lang in list(models):
if lang == 'en':
continue # No need of any Indic-transliteration for English
if '+' in lang:
# If it's a code-mixed model like Hinglish, we need Hindi Xlit for non-English words
# TODO: Make it mandatory irrespective of `allow_transliteration` boolean
lang = lang.split('+')[1]
code_mixed_found = True
xlit_langs.add(lang)
self.xlit_engine = XlitEngine(xlit_langs, beam_width=6)
else:
self.xlit_engine = None
self.text_normalizer = TextNormalizer()
self.paragraph_handler = ParagraphHandler()
self.sent_seg = pysbd.Segmenter(language="en", clean=True)
self.orig_sr = 22050 # model.output_sample_rate
self.enable_denoiser = enable_denoiser
if enable_denoiser:
from src.postprocessor import Denoiser
self.target_sr = 16000
self.denoiser = Denoiser(self.orig_sr, self.target_sr)
else:
self.target_sr = self.orig_sr
self.post_processor = PostProcessor(self.target_sr)
if code_mixed_found:
# Dictionary of English words
import enchant
from enchant.tokenize import get_tokenizer
self.enchant_dicts = {
"en_US": enchant.Dict("en_US"),
"en_GB": enchant.Dict("en_GB"),
}
self.enchant_tokenizer = get_tokenizer("en")
def concatenate_chunks(self, wav: np.ndarray, wav_chunk: np.ndarray):
# TODO: Move to utils
if type(wav_chunk) != np.ndarray:
wav_chunk = np.array(wav_chunk)
if wav is None:
return wav_chunk
return np.concatenate([wav, wav_chunk])
def infer_from_request(
self,
request: TTSRequest,
transliterate_roman_to_native: bool = True
) -> TTSResponse:
config = request.config
lang = config.language.sourceLanguage
gender = config.gender
# If there's no separate English model, use the Hinglish one
if lang == "en" and lang not in self.models and "en+hi" in self.models:
lang = "en+hi"
if lang not in self.models:
return TTSFailureResponse(status_text="Unsupported language!")
if lang == "brx" and gender == "male":
return TTSFailureResponse(status_text="Sorry, `male` speaker not supported for this language!")
output_list = []
for sentence in request.input:
raw_audio = self.infer_from_text(sentence.source, lang, gender, transliterate_roman_to_native=transliterate_roman_to_native)
# Convert PCM to WAV
byte_io = io.BytesIO()
scipy_wav_write(byte_io, self.target_sr, raw_audio)
# Encode WAV fileobject as base64 for transmission via JSON
encoded_bytes = base64.b64encode(byte_io.read())
encoded_string = encoded_bytes.decode()
speech_response = AudioFile(audioContent=encoded_string)
output_list.append(speech_response)
audio_config = AudioConfig(language=Language(sourceLanguage=lang))
return TTSResponse(audio=output_list, config=audio_config)
def infer_from_text(
self,
input_text: str,
lang: str,
speaker_name: str,
transliterate_roman_to_native: bool = True
) -> np.ndarray:
# If there's no separate English model, use the Hinglish one
if lang == "en" and lang not in self.models and "en+hi" in self.models:
lang = "en+hi"
input_text, primary_lang, secondary_lang = self.parse_langs_normalise_text(input_text, lang)
wav = None
paragraphs = self.paragraph_handler.split_text(input_text)
for paragraph in paragraphs:
paragraph = self.handle_transliteration(paragraph, primary_lang, transliterate_roman_to_native)
paras = []
for sent in self.sent_seg.segment(paragraph):
if sent.strip() and not re.match(r'^[_\W]+$', sent.strip()):
paras.append(sent.strip())
paragraph = " ".join(paras)
# Run Inference. TODO: Support for batch inference
wav_chunk = self.models[lang].tts(paragraph, speaker_name=speaker_name, style_wav="")
wav_chunk = self.postprocess_audio(wav_chunk, primary_lang, speaker_name)
# Concatenate current chunk with previous audio outputs
wav = self.concatenate_chunks(wav, wav_chunk)
return wav
def parse_langs_normalise_text(self, input_text: str, lang: str) -> Union[str, str, str]:
# If there's no separate English model, use the Hinglish one if present
if lang == "en" and lang not in self.models and "en+hi" in self.models:
lang = "en+hi"
if lang == "en+hi": # Hinglish (English+Hindi code-mixed)
primary_lang, secondary_lang = lang.split('+')
else:
primary_lang = lang
secondary_lang = None
input_text = self.text_normalizer.normalize_text(input_text, primary_lang)
if secondary_lang:
# TODO: Write a proper `transliterate_native_words_using_eng_dictionary`
input_text = self.transliterate_native_words_using_spell_checker(input_text, secondary_lang)
return input_text, primary_lang, secondary_lang
def handle_transliteration(self, input_text: str, primary_lang: str, transliterate_roman_to_native: bool) -> str:
if transliterate_roman_to_native and primary_lang != 'en':
input_text = self.transliterate_sentence(input_text, primary_lang)
# Manipuri was trained using the Central-govt's Bangla script
# So convert the words in native state-govt script to Eastern-Nagari
if primary_lang == "mni":
# TODO: Delete explicit-schwa
input_text = aksharamukha_xlit("MeeteiMayek", "Bengali", input_text)
return input_text
def preprocess_text(
self,
input_text: str,
lang: str,
# speaker_name: str,
transliterate_roman_to_native: bool = True
) -> np.ndarray:
input_text, primary_lang, secondary_lang = self.parse_langs_normalise_text(input_text, lang)
input_text = self.handle_transliteration(input_text, primary_lang, transliterate_roman_to_native)
return input_text
def postprocess_audio(self, wav_chunk, primary_lang, speaker_name):
if self.enable_denoiser:
wav_chunk = self.denoiser.denoise(wav_chunk)
wav_chunk = self.post_processor.process(wav_chunk, primary_lang, speaker_name)
return wav_chunk
def transliterate_native_words_using_spell_checker(self, input_text, lang):
tokens = [result[0] for result in self.enchant_tokenizer(input_text)]
pos_tags = [result[1] for result in nltk.tag.pos_tag(tokens)]
# Transliterate non-English Roman words to Indic
for word, pos_tag in zip(tokens, pos_tags):
if pos_tag == "NNP" or pos_tag == "NNPS":
# Enchant has many proper-nouns as well in its dictionary, don't know why.
# So if it's a proper-noun, always nativize
# FIXME: But NLTK's `averaged_perceptron_tagger` does not seem to be 100% accurate, it has false positives 🤦‍♂️
pass
elif self.enchant_dicts["en_US"].check(word) or self.enchant_dicts["en_GB"].check(word):
# TODO: Merge British and American dicts into 1 somehow
continue
# Convert "Ram's" -> "Ram". TODO: Think what are the failure cases
word = word.split("'")[0]
transliterated_word = self.transliterate_sentence(word, lang)
input_text = input_text.replace(word, transliterated_word, 1)
return input_text
def transliterate_sentence(self, input_text, lang):
if not self.xlit_engine:
return input_text
if lang == "raj":
lang = "hi" # Approximate
return self.xlit_engine.translit_sentence(input_text, lang)