File size: 9,550 Bytes
a920b41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import io
import re
import base64
import numpy as np
import traceback
from typing import Union
from TTS.utils.synthesizer import Synthesizer
from aksharamukha.transliterate import process as aksharamukha_xlit
from scipy.io.wavfile import write as scipy_wav_write
import nltk
import pysbd
from .models.common import Language
from .models.request import TTSRequest
from .models.response import AudioFile, AudioConfig, TTSResponse, TTSFailureResponse
from .utils.text import TextNormalizer
from .utils.paragraph_handler import ParagraphHandler
from src.postprocessor import PostProcessor
class TextToSpeechEngine:
def __init__(
self,
models: dict,
allow_transliteration: bool = True,
enable_denoiser: bool = True,
):
self.models = models
# TODO: Ability to instantiate models by accepting standard paths or auto-downloading
code_mixed_found = False
if allow_transliteration:
# Initialize Indic-Xlit models for the languages corresponding to TTS models
from ai4bharat.transliteration import XlitEngine
xlit_langs = set()
for lang in list(models):
if lang == 'en':
continue # No need of any Indic-transliteration for English
if '+' in lang:
# If it's a code-mixed model like Hinglish, we need Hindi Xlit for non-English words
# TODO: Make it mandatory irrespective of `allow_transliteration` boolean
lang = lang.split('+')[1]
code_mixed_found = True
xlit_langs.add(lang)
self.xlit_engine = XlitEngine(xlit_langs, beam_width=6)
else:
self.xlit_engine = None
self.text_normalizer = TextNormalizer()
self.paragraph_handler = ParagraphHandler()
self.sent_seg = pysbd.Segmenter(language="en", clean=True)
self.orig_sr = 22050 # model.output_sample_rate
self.enable_denoiser = enable_denoiser
if enable_denoiser:
from src.postprocessor import Denoiser
self.target_sr = 16000
self.denoiser = Denoiser(self.orig_sr, self.target_sr)
else:
self.target_sr = self.orig_sr
self.post_processor = PostProcessor(self.target_sr)
if code_mixed_found:
# Dictionary of English words
import enchant
from enchant.tokenize import get_tokenizer
self.enchant_dicts = {
"en_US": enchant.Dict("en_US"),
"en_GB": enchant.Dict("en_GB"),
}
self.enchant_tokenizer = get_tokenizer("en")
def concatenate_chunks(self, wav: np.ndarray, wav_chunk: np.ndarray):
# TODO: Move to utils
if type(wav_chunk) != np.ndarray:
wav_chunk = np.array(wav_chunk)
if wav is None:
return wav_chunk
return np.concatenate([wav, wav_chunk])
def infer_from_request(
self,
request: TTSRequest,
transliterate_roman_to_native: bool = True
) -> TTSResponse:
config = request.config
lang = config.language.sourceLanguage
gender = config.gender
# If there's no separate English model, use the Hinglish one
if lang == "en" and lang not in self.models and "en+hi" in self.models:
lang = "en+hi"
if lang not in self.models:
return TTSFailureResponse(status_text="Unsupported language!")
if lang == "brx" and gender == "male":
return TTSFailureResponse(status_text="Sorry, `male` speaker not supported for this language!")
output_list = []
for sentence in request.input:
raw_audio = self.infer_from_text(sentence.source, lang, gender, transliterate_roman_to_native=transliterate_roman_to_native)
# Convert PCM to WAV
byte_io = io.BytesIO()
scipy_wav_write(byte_io, self.target_sr, raw_audio)
# Encode WAV fileobject as base64 for transmission via JSON
encoded_bytes = base64.b64encode(byte_io.read())
encoded_string = encoded_bytes.decode()
speech_response = AudioFile(audioContent=encoded_string)
output_list.append(speech_response)
audio_config = AudioConfig(language=Language(sourceLanguage=lang))
return TTSResponse(audio=output_list, config=audio_config)
def infer_from_text(
self,
input_text: str,
lang: str,
speaker_name: str,
transliterate_roman_to_native: bool = True
) -> np.ndarray:
# If there's no separate English model, use the Hinglish one
if lang == "en" and lang not in self.models and "en+hi" in self.models:
lang = "en+hi"
input_text, primary_lang, secondary_lang = self.parse_langs_normalise_text(input_text, lang)
wav = None
paragraphs = self.paragraph_handler.split_text(input_text)
for paragraph in paragraphs:
paragraph = self.handle_transliteration(paragraph, primary_lang, transliterate_roman_to_native)
paras = []
for sent in self.sent_seg.segment(paragraph):
if sent.strip() and not re.match(r'^[_\W]+$', sent.strip()):
paras.append(sent.strip())
paragraph = " ".join(paras)
# Run Inference. TODO: Support for batch inference
wav_chunk = self.models[lang].tts(paragraph, speaker_name=speaker_name, style_wav="")
wav_chunk = self.postprocess_audio(wav_chunk, primary_lang, speaker_name)
# Concatenate current chunk with previous audio outputs
wav = self.concatenate_chunks(wav, wav_chunk)
return wav
def parse_langs_normalise_text(self, input_text: str, lang: str) -> Union[str, str, str]:
# If there's no separate English model, use the Hinglish one if present
if lang == "en" and lang not in self.models and "en+hi" in self.models:
lang = "en+hi"
if lang == "en+hi": # Hinglish (English+Hindi code-mixed)
primary_lang, secondary_lang = lang.split('+')
else:
primary_lang = lang
secondary_lang = None
input_text = self.text_normalizer.normalize_text(input_text, primary_lang)
if secondary_lang:
# TODO: Write a proper `transliterate_native_words_using_eng_dictionary`
input_text = self.transliterate_native_words_using_spell_checker(input_text, secondary_lang)
return input_text, primary_lang, secondary_lang
def handle_transliteration(self, input_text: str, primary_lang: str, transliterate_roman_to_native: bool) -> str:
if transliterate_roman_to_native and primary_lang != 'en':
input_text = self.transliterate_sentence(input_text, primary_lang)
# Manipuri was trained using the Central-govt's Bangla script
# So convert the words in native state-govt script to Eastern-Nagari
if primary_lang == "mni":
# TODO: Delete explicit-schwa
input_text = aksharamukha_xlit("MeeteiMayek", "Bengali", input_text)
return input_text
def preprocess_text(
self,
input_text: str,
lang: str,
# speaker_name: str,
transliterate_roman_to_native: bool = True
) -> np.ndarray:
input_text, primary_lang, secondary_lang = self.parse_langs_normalise_text(input_text, lang)
input_text = self.handle_transliteration(input_text, primary_lang, transliterate_roman_to_native)
return input_text
def postprocess_audio(self, wav_chunk, primary_lang, speaker_name):
if self.enable_denoiser:
wav_chunk = self.denoiser.denoise(wav_chunk)
wav_chunk = self.post_processor.process(wav_chunk, primary_lang, speaker_name)
return wav_chunk
def transliterate_native_words_using_spell_checker(self, input_text, lang):
tokens = [result[0] for result in self.enchant_tokenizer(input_text)]
pos_tags = [result[1] for result in nltk.tag.pos_tag(tokens)]
# Transliterate non-English Roman words to Indic
for word, pos_tag in zip(tokens, pos_tags):
if pos_tag == "NNP" or pos_tag == "NNPS":
# Enchant has many proper-nouns as well in its dictionary, don't know why.
# So if it's a proper-noun, always nativize
# FIXME: But NLTK's `averaged_perceptron_tagger` does not seem to be 100% accurate, it has false positives 🤦♂️
pass
elif self.enchant_dicts["en_US"].check(word) or self.enchant_dicts["en_GB"].check(word):
# TODO: Merge British and American dicts into 1 somehow
continue
# Convert "Ram's" -> "Ram". TODO: Think what are the failure cases
word = word.split("'")[0]
transliterated_word = self.transliterate_sentence(word, lang)
input_text = input_text.replace(word, transliterated_word, 1)
return input_text
def transliterate_sentence(self, input_text, lang):
if not self.xlit_engine:
return input_text
if lang == "raj":
lang = "hi" # Approximate
return self.xlit_engine.translit_sentence(input_text, lang)
|