h2o-danube2 with ChatML template

This model was first fine-tuned with BAdam on mlabonne/orpo-dpo-mix-40k, but as SFT and not DPO, using LLama-Factory.

Quants

Much love, mradermacher!

Template

<|im_start|>user
{{instruction}}<|im_end|>
<|im_start|>assistant
{{response}}<|im_end|>

BAdam config

### model
model_name_or_path: danube2-base-chatml

### method
stage: sft
do_train: true
finetuning_type: full
use_badam: true
badam_switch_mode: ascending
badam_switch_interval: 50
badam_verbose: 1
badam_start_block: 12
badam_mask_mode: scatter
seed: 314

### dataset
dataset: orpo_sft_mix_40k
template: hermes_chatml
cutoff_len: 8192
overwrite_cache: false
preprocessing_num_workers: 12

### output
output_dir: orpo-chatml-badam
logging_steps: 5
save_steps: 1
save_strategy: epoch
plot_loss: true
overwrite_output_dir: false

### train
per_device_train_batch_size: 2
gradient_accumulation_steps: 8
learning_rate: 0.00001
num_train_epochs: 2
lr_scheduler_type: cosine
warmup_ratio: 0.01
pure_bf16: true
flash_attn: fa2

### eval
val_size: 0.01
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 1000

BAdam training results

Training Loss Epoch Step Validation Loss
0.7474 0.3653 1000 0.8887
0.9106 0.7306 2000 0.8681
0.8121 1.0958 3000 0.8635
0.8636 1.4611 4000 0.8562
0.8 1.8264 5000 0.8565
Downloads last month
20
Safetensors
Model size
1.83B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for trollek/danube2-1.8b-Neural

Finetuned
(13)
this model
Quantizations
1 model

Dataset used to train trollek/danube2-1.8b-Neural

Collection including trollek/danube2-1.8b-Neural