distilBERT-infoExtract
This model is a fine-tuned version of distilbert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0718
- Precision: 0.9134
- Recall: 0.9369
- F1: 0.9250
- Accuracy: 0.9832
Model description
The model can identify human name, organization and location so far (no time recognition). It was trained for 5 minutes with T4 GPU on Colab.
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0954 | 1.0 | 1756 | 0.0846 | 0.8880 | 0.9194 | 0.9034 | 0.9769 |
0.0498 | 2.0 | 3512 | 0.0699 | 0.9057 | 0.9310 | 0.9182 | 0.9815 |
0.031 | 3.0 | 5268 | 0.0718 | 0.9134 | 0.9369 | 0.9250 | 0.9832 |
Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for tony4194/distilBERT-infoExtract
Base model
distilbert/distilbert-base-casedDataset used to train tony4194/distilBERT-infoExtract
Evaluation results
- Precision on conll2003validation set self-reported0.913
- Recall on conll2003validation set self-reported0.937
- F1 on conll2003validation set self-reported0.925
- Accuracy on conll2003validation set self-reported0.983