custom-model / custom_model.py
toind's picture
Create custom_model.py
558b35e verified
# custom_model.py
from transformers import PreTrainedModel, PretrainedConfig
import torch
import torch.nn as nn
class CustomConfig(PretrainedConfig):
model_type = "custom_model"
def __init__(self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, num_labels=2, **kwargs):
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_labels = num_labels
class CustomModel(PreTrainedModel):
config_class = CustomConfig
def __init__(self, config):
super().__init__(config)
self.embedding = nn.Embedding(config.vocab_size, config.hidden_size)
self.layers = nn.ModuleList([nn.TransformerEncoderLayer(d_model=config.hidden_size, nhead=config.num_attention_heads) for _ in range(config.num_hidden_layers)])
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
self.init_weights()
def forward(self, input_ids):
embeddings = self.embedding(input_ids)
x = embeddings
for layer in self.layers:
x = layer(x)
logits = self.classifier(x.mean(dim=1)) # Example: taking the mean of the output as input to the classifier
return logits