toind commited on
Commit
558b35e
·
verified ·
1 Parent(s): 2dc50c2

Create custom_model.py

Browse files
Files changed (1) hide show
  1. custom_model.py +35 -0
custom_model.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # custom_model.py
2
+
3
+ from transformers import PreTrainedModel, PretrainedConfig
4
+ import torch
5
+ import torch.nn as nn
6
+
7
+ class CustomConfig(PretrainedConfig):
8
+ model_type = "custom_model"
9
+
10
+ def __init__(self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, num_labels=2, **kwargs):
11
+ super().__init__(**kwargs)
12
+ self.vocab_size = vocab_size
13
+ self.hidden_size = hidden_size
14
+ self.num_hidden_layers = num_hidden_layers
15
+ self.num_attention_heads = num_attention_heads
16
+ self.num_labels = num_labels
17
+
18
+ class CustomModel(PreTrainedModel):
19
+ config_class = CustomConfig
20
+
21
+ def __init__(self, config):
22
+ super().__init__(config)
23
+ self.embedding = nn.Embedding(config.vocab_size, config.hidden_size)
24
+ self.layers = nn.ModuleList([nn.TransformerEncoderLayer(d_model=config.hidden_size, nhead=config.num_attention_heads) for _ in range(config.num_hidden_layers)])
25
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
26
+
27
+ self.init_weights()
28
+
29
+ def forward(self, input_ids):
30
+ embeddings = self.embedding(input_ids)
31
+ x = embeddings
32
+ for layer in self.layers:
33
+ x = layer(x)
34
+ logits = self.classifier(x.mean(dim=1)) # Example: taking the mean of the output as input to the classifier
35
+ return logits