Model card for tf_efficientnet_b5.ap_in1k
A EfficientNet image classification model. Trained on ImageNet-1k with AdvProp (adversarial examples) in Tensorflow by paper authors, ported to PyTorch by Ross Wightman.
Model Details
- Model Type: Image classification / feature backbone
- Model Stats:
- Params (M): 30.4
- GMACs: 10.5
- Activations (M): 98.9
- Image size: 456 x 456
- Papers:
- EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks: https://arxiv.org/abs/1905.11946
- Adversarial Examples Improve Image Recognition: https://arxiv.org/abs/1911.09665
- Dataset: ImageNet-1k
- Original: https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
Model Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('tf_efficientnet_b5.ap_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Feature Map Extraction
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'tf_efficientnet_b5.ap_in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 24, 228, 228])
# torch.Size([1, 40, 114, 114])
# torch.Size([1, 64, 57, 57])
# torch.Size([1, 176, 29, 29])
# torch.Size([1, 512, 15, 15])
print(o.shape)
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'tf_efficientnet_b5.ap_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 2048, 15, 15) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
Model Comparison
Explore the dataset and runtime metrics of this model in timm model results.
Citation
@inproceedings{tan2019efficientnet,
title={Efficientnet: Rethinking model scaling for convolutional neural networks},
author={Tan, Mingxing and Le, Quoc},
booktitle={International conference on machine learning},
pages={6105--6114},
year={2019},
organization={PMLR}
}
@article{Xie2019AdversarialEI,
title={Adversarial Examples Improve Image Recognition},
author={Cihang Xie and Mingxing Tan and Boqing Gong and Jiang Wang and Alan Loddon Yuille and Quoc V. Le},
journal={2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2019},
pages={816-825}
}
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
- Downloads last month
- 270
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.