timm
/

Image Classification
timm
PyTorch
Safetensors
Transformers
pcuenq's picture
pcuenq HF staff
transformers tag
d48d5c1 verified
metadata
tags:
  - image-classification
  - timm
  - transformers
library_name: timm
license: apache-2.0
datasets:
  - imagenet-1k

Model card for fbnetc_100.rmsp_in1k

A FBNet image classification model. Trained on ImageNet-1k in timm using recipe template described below.

Recipe details:

  • A simple RmsProp based recipe without RandAugment. Using RandomErasing, mixup, dropout, standard random-resize-crop augmentation.
  • RMSProp (TF 1.0 behaviour) optimizer, EMA weight averaging
  • Step (exponential decay w/ staircase) LR schedule with warmup

Model Details

Model Usage

Image Classification

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('fbnetc_100.rmsp_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

Feature Map Extraction

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'fbnetc_100.rmsp_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 16, 112, 112])
    #  torch.Size([1, 24, 56, 56])
    #  torch.Size([1, 32, 28, 28])
    #  torch.Size([1, 112, 14, 14])
    #  torch.Size([1, 352, 7, 7])

    print(o.shape)

Image Embeddings

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'fbnetc_100.rmsp_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 1984, 7, 7) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

Model Comparison

Explore the dataset and runtime metrics of this model in timm model results.

Citation

@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
@inproceedings{wu2019fbnet,
  title={Fbnet: Hardware-aware efficient convnet design via differentiable neural architecture search},
  author={Wu, Bichen and Dai, Xiaoliang and Zhang, Peizhao and Wang, Yanghan and Sun, Fei and Wu, Yiming and Tian, Yuandong and Vajda, Peter and Jia, Yangqing and Keutzer, Kurt},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={10734--10742},
  year={2019}
}