Model card for eva_giant_patch14_336.m30m_ft_in22k_in1k
An EVA image classification model. Pretrained on Merged-30M (ImageNet-22K, CC12M, CC3M, Object365, COCO (train), ADE20K (train)) with masked image modeling (using OpenAI CLIP-L as a MIM teacher) and fine-tuned on ImageNet-22k then on ImageNet-1k by paper authors.
NOTE: timm
checkpoints are float32 for consistency with other models. Original checkpoints are float16 or bfloat16 in some cases, see originals if that's preferred.
Model Details
- Model Type: Image classification / feature backbone
- Model Stats:
- Params (M): 1013.0
- GMACs: 620.6
- Activations (M): 550.7
- Image size: 336 x 336
- Papers:
- Pretrain Dataset:
- Dataset: ImageNet-1k
- Original:
Model Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('eva_giant_patch14_336.m30m_ft_in22k_in1k', pretrained=True)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'eva_giant_patch14_336.m30m_ft_in22k_in1k',
pretrained=True,
num_classes=0,
)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))
output = model.forward_features(transforms(img).unsqueeze(0))
output = model.forward_head(output, pre_logits=True)
Model Comparison
Explore the dataset and runtime metrics of this model in timm model results.
model |
top1 |
top5 |
param_count |
img_size |
eva02_large_patch14_448.mim_m38m_ft_in22k_in1k |
90.054 |
99.042 |
305.08 |
448 |
eva02_large_patch14_448.mim_in22k_ft_in22k_in1k |
89.946 |
99.01 |
305.08 |
448 |
eva_giant_patch14_560.m30m_ft_in22k_in1k |
89.792 |
98.992 |
1014.45 |
560 |
eva02_large_patch14_448.mim_in22k_ft_in1k |
89.626 |
98.954 |
305.08 |
448 |
eva02_large_patch14_448.mim_m38m_ft_in1k |
89.57 |
98.918 |
305.08 |
448 |
eva_giant_patch14_336.m30m_ft_in22k_in1k |
89.56 |
98.956 |
1013.01 |
336 |
eva_giant_patch14_336.clip_ft_in1k |
89.466 |
98.82 |
1013.01 |
336 |
eva_large_patch14_336.in22k_ft_in22k_in1k |
89.214 |
98.854 |
304.53 |
336 |
eva_giant_patch14_224.clip_ft_in1k |
88.882 |
98.678 |
1012.56 |
224 |
eva02_base_patch14_448.mim_in22k_ft_in22k_in1k |
88.692 |
98.722 |
87.12 |
448 |
eva_large_patch14_336.in22k_ft_in1k |
88.652 |
98.722 |
304.53 |
336 |
eva_large_patch14_196.in22k_ft_in22k_in1k |
88.592 |
98.656 |
304.14 |
196 |
eva02_base_patch14_448.mim_in22k_ft_in1k |
88.23 |
98.564 |
87.12 |
448 |
eva_large_patch14_196.in22k_ft_in1k |
87.934 |
98.504 |
304.14 |
196 |
eva02_small_patch14_336.mim_in22k_ft_in1k |
85.74 |
97.614 |
22.13 |
336 |
eva02_tiny_patch14_336.mim_in22k_ft_in1k |
80.658 |
95.524 |
5.76 |
336 |
Citation
@article{EVA,
title={EVA: Exploring the Limits of Masked Visual Representation Learning at Scale},
author={Fang, Yuxin and Wang, Wen and Xie, Binhui and Sun, Quan and Wu, Ledell and Wang, Xinggang and Huang, Tiejun and Wang, Xinlong and Cao, Yue},
journal={arXiv preprint arXiv:2211.07636},
year={2022}
}
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}