|
--- |
|
license: apache-2.0 |
|
library_name: timm |
|
tags: |
|
- image-classification |
|
- timm |
|
datasets: |
|
- imagenet-1k |
|
--- |
|
# Model card for davit_small.msft_in1k |
|
|
|
A DaViT image classification model. Trained on ImageNet-1k by paper authors. |
|
|
|
Thanks to [Fredo Guan](https://github.com/fffffgggg54) for bringing the classification backbone to `timm`. |
|
|
|
|
|
## Model Details |
|
- **Model Type:** Image classification / feature backbone |
|
- **Model Stats:** |
|
- Params (M): 49.7 |
|
- GMACs: 8.8 |
|
- Activations (M): 30.5 |
|
- Image size: 224 x 224 |
|
- **Papers:** |
|
- DaViT: Dual Attention Vision Transformers: https://arxiv.org/abs/2204.03645 |
|
- **Original:** https://github.com/dingmyu/davit |
|
- **Dataset:** ImageNet-1k |
|
|
|
## Model Usage |
|
### Image Classification |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
img = Image.open( |
|
urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) |
|
|
|
model = timm.create_model('davit_small.msft_in1k', pretrained=True) |
|
model = model.eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 |
|
|
|
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) |
|
``` |
|
|
|
### Feature Map Extraction |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
img = Image.open( |
|
urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) |
|
|
|
model = timm.create_model( |
|
'davit_small.msft_in1k', |
|
pretrained=True, |
|
features_only=True, |
|
) |
|
model = model.eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 |
|
|
|
for o in output: |
|
# print shape of each feature map in output |
|
# e.g.: |
|
# torch.Size([1, 96, 56, 56]) |
|
# torch.Size([1, 192, 28, 28]) |
|
# torch.Size([1, 384, 14, 14]) |
|
# torch.Size([1, 768, 7, 7] |
|
print(o.shape) |
|
``` |
|
|
|
### Image Embeddings |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
img = Image.open( |
|
urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) |
|
|
|
model = timm.create_model( |
|
'davit_small.msft_in1k', |
|
pretrained=True, |
|
num_classes=0, # remove classifier nn.Linear |
|
) |
|
model = model.eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor |
|
|
|
# or equivalently (without needing to set num_classes=0) |
|
|
|
output = model.forward_features(transforms(img).unsqueeze(0)) |
|
# output is unpooled (ie.e a (batch_size, num_features, H, W) tensor |
|
|
|
output = model.forward_head(output, pre_logits=True) |
|
# output is (batch_size, num_features) tensor |
|
``` |
|
|
|
## Model Comparison |
|
### By Top-1 |
|
|
|
|model |top1 |top1_err|top5 |top5_err|param_count|img_size|crop_pct|interpolation| |
|
|---------------------|------|--------|------|--------|-----------|--------|--------|-------------| |
|
|davit_base.msft_in1k |84.634|15.366 |97.014|2.986 |87.95 |224 |0.95 |bicubic | |
|
|davit_small.msft_in1k|84.25 |15.75 |96.94 |3.06 |49.75 |224 |0.95 |bicubic | |
|
|davit_tiny.msft_in1k |82.676|17.324 |96.276|3.724 |28.36 |224 |0.95 |bicubic | |
|
|
|
## Citation |
|
```bibtex |
|
@inproceedings{ding2022davit, |
|
title={DaViT: Dual Attention Vision Transformer}, |
|
author={Ding, Mingyu and Xiao, Bin and Codella, Noel and Luo, Ping and Wang, Jingdong and Yuan, Lu}, |
|
booktitle={ECCV}, |
|
year={2022}, |
|
} |
|
``` |
|
|