Model card for convnext_large.fb_in1k
A ConvNeXt image classification model. Pretrained on ImageNet-1k by paper authors.
Model Details
- Model Type: Image classification / feature backbone
- Model Stats:
- Params (M): 197.8
- GMACs: 34.4
- Activations (M): 43.1
- Image size: train = 224 x 224, test = 288 x 288
- Papers:
- A ConvNet for the 2020s: https://arxiv.org/abs/2201.03545
- Original: https://github.com/facebookresearch/ConvNeXt
- Dataset: ImageNet-1k
Model Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('convnext_large.fb_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Feature Map Extraction
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'convnext_large.fb_in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 192, 56, 56])
# torch.Size([1, 384, 28, 28])
# torch.Size([1, 768, 14, 14])
# torch.Size([1, 1536, 7, 7])
print(o.shape)
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'convnext_large.fb_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 1536, 7, 7) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
Model Comparison
Explore the dataset and runtime metrics of this model in timm model results.
All timing numbers from eager model PyTorch 1.13 on RTX 3090 w/ AMP.
model | top1 | top5 | img_size | param_count | gmacs | macts | samples_per_sec | batch_size |
---|---|---|---|---|---|---|---|---|
convnextv2_huge.fcmae_ft_in22k_in1k_512 | 88.848 | 98.742 | 512 | 660.29 | 600.81 | 413.07 | 28.58 | 48 |
convnextv2_huge.fcmae_ft_in22k_in1k_384 | 88.668 | 98.738 | 384 | 660.29 | 337.96 | 232.35 | 50.56 | 64 |
convnext_xxlarge.clip_laion2b_soup_ft_in1k | 88.612 | 98.704 | 256 | 846.47 | 198.09 | 124.45 | 122.45 | 256 |
convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384 | 88.312 | 98.578 | 384 | 200.13 | 101.11 | 126.74 | 196.84 | 256 |
convnextv2_large.fcmae_ft_in22k_in1k_384 | 88.196 | 98.532 | 384 | 197.96 | 101.1 | 126.74 | 128.94 | 128 |
convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320 | 87.968 | 98.47 | 320 | 200.13 | 70.21 | 88.02 | 283.42 | 256 |
convnext_xlarge.fb_in22k_ft_in1k_384 | 87.75 | 98.556 | 384 | 350.2 | 179.2 | 168.99 | 124.85 | 192 |
convnextv2_base.fcmae_ft_in22k_in1k_384 | 87.646 | 98.422 | 384 | 88.72 | 45.21 | 84.49 | 209.51 | 256 |
convnext_large.fb_in22k_ft_in1k_384 | 87.476 | 98.382 | 384 | 197.77 | 101.1 | 126.74 | 194.66 | 256 |
convnext_large_mlp.clip_laion2b_augreg_ft_in1k | 87.344 | 98.218 | 256 | 200.13 | 44.94 | 56.33 | 438.08 | 256 |
convnextv2_large.fcmae_ft_in22k_in1k | 87.26 | 98.248 | 224 | 197.96 | 34.4 | 43.13 | 376.84 | 256 |
convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384 | 87.138 | 98.212 | 384 | 88.59 | 45.21 | 84.49 | 365.47 | 256 |
convnext_xlarge.fb_in22k_ft_in1k | 87.002 | 98.208 | 224 | 350.2 | 60.98 | 57.5 | 368.01 | 256 |
convnext_base.fb_in22k_ft_in1k_384 | 86.796 | 98.264 | 384 | 88.59 | 45.21 | 84.49 | 366.54 | 256 |
convnextv2_base.fcmae_ft_in22k_in1k | 86.74 | 98.022 | 224 | 88.72 | 15.38 | 28.75 | 624.23 | 256 |
convnext_large.fb_in22k_ft_in1k | 86.636 | 98.028 | 224 | 197.77 | 34.4 | 43.13 | 581.43 | 256 |
convnext_base.clip_laiona_augreg_ft_in1k_384 | 86.504 | 97.97 | 384 | 88.59 | 45.21 | 84.49 | 368.14 | 256 |
convnext_base.clip_laion2b_augreg_ft_in12k_in1k | 86.344 | 97.97 | 256 | 88.59 | 20.09 | 37.55 | 816.14 | 256 |
convnextv2_huge.fcmae_ft_in1k | 86.256 | 97.75 | 224 | 660.29 | 115.0 | 79.07 | 154.72 | 256 |
convnext_small.in12k_ft_in1k_384 | 86.182 | 97.92 | 384 | 50.22 | 25.58 | 63.37 | 516.19 | 256 |
convnext_base.clip_laion2b_augreg_ft_in1k | 86.154 | 97.68 | 256 | 88.59 | 20.09 | 37.55 | 819.86 | 256 |
convnext_base.fb_in22k_ft_in1k | 85.822 | 97.866 | 224 | 88.59 | 15.38 | 28.75 | 1037.66 | 256 |
convnext_small.fb_in22k_ft_in1k_384 | 85.778 | 97.886 | 384 | 50.22 | 25.58 | 63.37 | 518.95 | 256 |
convnextv2_large.fcmae_ft_in1k | 85.742 | 97.584 | 224 | 197.96 | 34.4 | 43.13 | 375.23 | 256 |
convnext_small.in12k_ft_in1k | 85.174 | 97.506 | 224 | 50.22 | 8.71 | 21.56 | 1474.31 | 256 |
convnext_tiny.in12k_ft_in1k_384 | 85.118 | 97.608 | 384 | 28.59 | 13.14 | 39.48 | 856.76 | 256 |
convnextv2_tiny.fcmae_ft_in22k_in1k_384 | 85.112 | 97.63 | 384 | 28.64 | 13.14 | 39.48 | 491.32 | 256 |
convnextv2_base.fcmae_ft_in1k | 84.874 | 97.09 | 224 | 88.72 | 15.38 | 28.75 | 625.33 | 256 |
convnext_small.fb_in22k_ft_in1k | 84.562 | 97.394 | 224 | 50.22 | 8.71 | 21.56 | 1478.29 | 256 |
convnext_large.fb_in1k | 84.282 | 96.892 | 224 | 197.77 | 34.4 | 43.13 | 584.28 | 256 |
convnext_tiny.in12k_ft_in1k | 84.186 | 97.124 | 224 | 28.59 | 4.47 | 13.44 | 2433.7 | 256 |
convnext_tiny.fb_in22k_ft_in1k_384 | 84.084 | 97.14 | 384 | 28.59 | 13.14 | 39.48 | 862.95 | 256 |
convnextv2_tiny.fcmae_ft_in22k_in1k | 83.894 | 96.964 | 224 | 28.64 | 4.47 | 13.44 | 1452.72 | 256 |
convnext_base.fb_in1k | 83.82 | 96.746 | 224 | 88.59 | 15.38 | 28.75 | 1054.0 | 256 |
convnextv2_nano.fcmae_ft_in22k_in1k_384 | 83.37 | 96.742 | 384 | 15.62 | 7.22 | 24.61 | 801.72 | 256 |
convnext_small.fb_in1k | 83.142 | 96.434 | 224 | 50.22 | 8.71 | 21.56 | 1464.0 | 256 |
convnextv2_tiny.fcmae_ft_in1k | 82.92 | 96.284 | 224 | 28.64 | 4.47 | 13.44 | 1425.62 | 256 |
convnext_tiny.fb_in22k_ft_in1k | 82.898 | 96.616 | 224 | 28.59 | 4.47 | 13.44 | 2480.88 | 256 |
convnext_nano.in12k_ft_in1k | 82.282 | 96.344 | 224 | 15.59 | 2.46 | 8.37 | 3926.52 | 256 |
convnext_tiny_hnf.a2h_in1k | 82.216 | 95.852 | 224 | 28.59 | 4.47 | 13.44 | 2529.75 | 256 |
convnext_tiny.fb_in1k | 82.066 | 95.854 | 224 | 28.59 | 4.47 | 13.44 | 2346.26 | 256 |
convnextv2_nano.fcmae_ft_in22k_in1k | 82.03 | 96.166 | 224 | 15.62 | 2.46 | 8.37 | 2300.18 | 256 |
convnextv2_nano.fcmae_ft_in1k | 81.83 | 95.738 | 224 | 15.62 | 2.46 | 8.37 | 2321.48 | 256 |
convnext_nano_ols.d1h_in1k | 80.866 | 95.246 | 224 | 15.65 | 2.65 | 9.38 | 3523.85 | 256 |
convnext_nano.d1h_in1k | 80.768 | 95.334 | 224 | 15.59 | 2.46 | 8.37 | 3915.58 | 256 |
convnextv2_pico.fcmae_ft_in1k | 80.304 | 95.072 | 224 | 9.07 | 1.37 | 6.1 | 3274.57 | 256 |
convnext_pico.d1_in1k | 79.526 | 94.558 | 224 | 9.05 | 1.37 | 6.1 | 5686.88 | 256 |
convnext_pico_ols.d1_in1k | 79.522 | 94.692 | 224 | 9.06 | 1.43 | 6.5 | 5422.46 | 256 |
convnextv2_femto.fcmae_ft_in1k | 78.488 | 93.98 | 224 | 5.23 | 0.79 | 4.57 | 4264.2 | 256 |
convnext_femto_ols.d1_in1k | 77.86 | 93.83 | 224 | 5.23 | 0.82 | 4.87 | 6910.6 | 256 |
convnext_femto.d1_in1k | 77.454 | 93.68 | 224 | 5.22 | 0.79 | 4.57 | 7189.92 | 256 |
convnextv2_atto.fcmae_ft_in1k | 76.664 | 93.044 | 224 | 3.71 | 0.55 | 3.81 | 4728.91 | 256 |
convnext_atto_ols.a2_in1k | 75.88 | 92.846 | 224 | 3.7 | 0.58 | 4.11 | 7963.16 | 256 |
convnext_atto.d2_in1k | 75.664 | 92.9 | 224 | 3.7 | 0.55 | 3.81 | 8439.22 | 256 |
Citation
@article{liu2022convnet,
author = {Zhuang Liu and Hanzi Mao and Chao-Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie},
title = {A ConvNet for the 2020s},
journal = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2022},
}
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
- Downloads last month
- 293
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.