tillschwoerer's picture
update model card README.md
0ac2317
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: distilbert-uncased-finetuned-toxic-comments-detection
    results: []

distilbert-uncased-finetuned-toxic-comments-detection

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1520
  • Accuracy: 0.95
  • Precision: 0.7391
  • Recall: 0.8095
  • F1: 0.7727

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.3892 1.0 50 0.2808 0.895 0.0 0.0 0.0
0.219 2.0 100 0.1732 0.93 0.8182 0.4286 0.5625
0.1313 3.0 150 0.1515 0.95 0.7391 0.8095 0.7727
0.0924 4.0 200 0.1520 0.95 0.7391 0.8095 0.7727
0.0749 5.0 250 0.1540 0.96 0.8095 0.8095 0.8095

Framework versions

  • Transformers 4.30.1
  • Pytorch 2.0.1+cu118
  • Tokenizers 0.13.3