sparse_mistral_7b_refined_web_50p_2024-04-14
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.1982
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 4
- seed: 0
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2600
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.3391 | 0.01 | 25 | 2.4196 |
2.2711 | 0.02 | 50 | 2.3577 |
2.3054 | 0.02 | 75 | 2.3158 |
2.2795 | 0.03 | 100 | 2.2966 |
2.3175 | 0.04 | 125 | 2.2846 |
2.2388 | 0.05 | 150 | 2.2766 |
2.1679 | 0.06 | 175 | 2.2705 |
2.2996 | 0.06 | 200 | 2.2678 |
2.2788 | 0.07 | 225 | 2.2647 |
2.2448 | 0.08 | 250 | 2.2637 |
2.1837 | 0.09 | 275 | 2.2624 |
2.2089 | 0.1 | 300 | 2.2621 |
2.2686 | 0.1 | 325 | 2.2601 |
2.2254 | 0.11 | 350 | 2.2593 |
2.162 | 0.12 | 375 | 2.2590 |
2.2687 | 0.13 | 400 | 2.2563 |
2.2595 | 0.14 | 425 | 2.2571 |
2.186 | 0.14 | 450 | 2.2564 |
2.2689 | 0.15 | 475 | 2.2580 |
2.2472 | 0.16 | 500 | 2.2554 |
2.2005 | 0.17 | 525 | 2.2553 |
2.1983 | 0.18 | 550 | 2.2552 |
2.2388 | 0.18 | 575 | 2.2547 |
2.1443 | 0.19 | 600 | 2.2555 |
2.2198 | 0.2 | 625 | 2.2534 |
2.3008 | 0.21 | 650 | 2.2536 |
2.179 | 0.22 | 675 | 2.2521 |
2.2069 | 0.22 | 700 | 2.2531 |
2.1819 | 0.23 | 725 | 2.2526 |
2.1218 | 0.24 | 750 | 2.2536 |
2.1845 | 0.25 | 775 | 2.2515 |
2.2167 | 0.26 | 800 | 2.2510 |
2.2252 | 0.26 | 825 | 2.2520 |
2.1664 | 0.27 | 850 | 2.2519 |
2.1853 | 0.28 | 875 | 2.2530 |
2.1499 | 0.29 | 900 | 2.2513 |
2.2763 | 0.3 | 925 | 2.2517 |
2.2528 | 0.3 | 950 | 2.2518 |
2.2505 | 0.31 | 975 | 2.2500 |
2.1683 | 0.32 | 1000 | 2.2502 |
2.2177 | 0.33 | 1025 | 2.2501 |
2.238 | 0.34 | 1050 | 2.2516 |
2.193 | 0.34 | 1075 | 2.2507 |
2.2025 | 0.35 | 1100 | 2.2502 |
2.0944 | 0.36 | 1125 | 2.2512 |
2.2272 | 0.37 | 1150 | 2.2508 |
2.2264 | 0.38 | 1175 | 2.2500 |
2.1837 | 0.38 | 1200 | 2.2507 |
2.1444 | 0.39 | 1225 | 2.2489 |
2.2464 | 0.4 | 1250 | 2.2499 |
2.1388 | 0.41 | 1275 | 2.2508 |
2.193 | 0.42 | 1300 | 2.2492 |
2.2376 | 0.42 | 1325 | 2.2506 |
2.2212 | 0.43 | 1350 | 2.2478 |
2.2002 | 0.44 | 1375 | 2.2488 |
2.2729 | 0.45 | 1400 | 2.2484 |
2.2329 | 0.46 | 1425 | 2.2473 |
2.1919 | 0.46 | 1450 | 2.2481 |
2.2102 | 0.47 | 1475 | 2.2475 |
2.1466 | 0.48 | 1500 | 2.2473 |
2.1819 | 0.49 | 1525 | 2.2478 |
2.2558 | 0.5 | 1550 | 2.2468 |
2.2137 | 0.5 | 1575 | 2.2463 |
2.2288 | 0.51 | 1600 | 2.2466 |
2.1479 | 0.52 | 1625 | 2.2468 |
2.1726 | 0.53 | 1650 | 2.2471 |
2.1805 | 0.54 | 1675 | 2.2454 |
2.1505 | 0.54 | 1700 | 2.2470 |
2.1337 | 0.55 | 1725 | 2.2465 |
2.2413 | 0.56 | 1750 | 2.2460 |
2.152 | 0.57 | 1775 | 2.2478 |
2.2669 | 0.58 | 1800 | 2.2471 |
2.2925 | 0.58 | 1825 | 2.2465 |
2.222 | 0.59 | 1850 | 2.2457 |
2.1308 | 0.6 | 1875 | 2.2466 |
2.201 | 0.61 | 1900 | 2.2456 |
2.2247 | 0.62 | 1925 | 2.2460 |
2.2426 | 0.62 | 1950 | 2.2463 |
2.2312 | 0.63 | 1975 | 2.2465 |
2.2679 | 0.64 | 2000 | 2.2464 |
2.1928 | 0.65 | 2025 | 2.2463 |
2.2087 | 0.66 | 2050 | 2.2455 |
2.1792 | 0.66 | 2075 | 2.2470 |
2.252 | 0.67 | 2100 | 2.2468 |
2.2018 | 0.68 | 2125 | 2.2456 |
2.2006 | 0.69 | 2150 | 2.2451 |
2.2076 | 0.7 | 2175 | 2.2449 |
2.2436 | 0.7 | 2200 | 2.2460 |
2.2156 | 0.71 | 2225 | 2.2477 |
2.1348 | 0.72 | 2250 | 2.2455 |
2.1351 | 0.73 | 2275 | 2.2451 |
2.215 | 0.74 | 2300 | 2.2459 |
2.2761 | 0.74 | 2325 | 2.2466 |
2.2039 | 0.75 | 2350 | 2.2466 |
2.172 | 0.76 | 2375 | 2.2453 |
2.1675 | 0.77 | 2400 | 2.2455 |
2.2627 | 0.78 | 2425 | 2.2462 |
2.1231 | 0.78 | 2450 | 2.2453 |
2.2615 | 0.79 | 2475 | 2.2460 |
2.1383 | 0.8 | 2500 | 2.2448 |
2.2105 | 0.81 | 2525 | 2.2449 |
2.2157 | 0.82 | 2550 | 2.2446 |
2.1304 | 0.82 | 2575 | 2.2439 |
2.2038 | 0.83 | 2600 | 2.2450 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 14
Inference API (serverless) does not yet support model repos that contain custom code.
Model tree for thrunlab/sparse_mistral_7b_refined_web_50p_2024-04-14
Base model
mistralai/Mistral-7B-v0.1