CiceroASR

This model is a fine-tuned version of facebook/w2v-bert-2.0 for the transcription of Classical Latin!

Example from the Aeneid: Transcription: arma virumque cano (Of arms and men I sing)

Example from Genesis: Transcription (little error there): creavit deus chaelum et terram (In the beggining God created the heaven and the earth)

It achieves the following results on the evaluation set of my dataset Latin Youtube:

  • Loss: 0.5395
  • Wer: 0.2220

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.6548 0.94 50 2.8634 0.9990
2.2055 1.89 100 1.0921 0.9727
1.667 2.83 150 0.7201 0.4615
1.3148 3.77 200 0.6431 0.3866
0.9899 4.72 250 0.5561 0.3116
0.9629 5.66 300 0.6027 0.3817
0.7557 6.6 350 0.7145 0.3145
0.9143 7.55 400 0.4926 0.2610
0.5837 8.49 450 0.5396 0.2619
0.7037 9.43 500 0.5076 0.2746
0.5986 10.38 550 0.5224 0.2415
0.5288 11.32 600 0.5332 0.2259
0.5034 12.26 650 0.5436 0.2249
0.4897 13.21 700 0.5171 0.2162
0.4738 14.15 750 0.5395 0.2220

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2
Downloads last month
10
Safetensors
Model size
606M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for thiagolira/CiceroASR

Finetuned
(241)
this model

Space using thiagolira/CiceroASR 1