Uploaded model
- Developed by: thesugar
- License: CC-BY-NC-SA
- Finetuned from model : llm-jp/llm-jp-3-13b
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
HOW TO INFERENCE for competition evaluators
Google Colab L4 で実行
!pip install unsloth
!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir --no-deps git+https://github.com/unslothai/unsloth.git
HF_TOKEN = # WRITE YOUR HF_TOKEN
ELYZA_TASKS_100_TV_JSONL_PATH = # WRITE
# Output for elyza-tasks-100-tv is saved as "output.jsonl"
from huggingface_hub import login
login(HF_TOKEN)
from unsloth import FastLanguageModel
import torch
max_seq_length = 2048
dtype = torch.bfloat16
load_in_4bit = True
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "thesugar/llm-jp-3-13b-it_lora-DPO-12-16",
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
token = HF_TOKEN,
)
import json
datasets = []
with open(ELYZA_TASKS_100_TV_JSONL_PATH, "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
from tqdm import tqdm
FastLanguageModel.for_inference(model)
model.eval()
results = []
for dt in tqdm(datasets):
input = dt["input"]
prompt = f"""### 指示\n{input}\n### 回答\n"""
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens = 2048, use_cache = True, do_sample=False, repetition_penalty=1.2)
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
with open("output.jsonl", "w") as f:
for r in results:
f.write(json.dumps(r, ensure_ascii=False) + "\n")
Development steps
llm-jp/llm-jp-3-13b
を量子化- インストラクションチューニング
ichikara-instruction
データセットのichikara-instruction-003-001-1.json
,ichikara-instruction-003-002-1.json
の全データを使用
- direct policy optimization
weblab-GENIAC/aya-ja-nemotron-dpo-masked
からランダムに選択した 100 レコードを使用
Used datasets and their licenses
ichikara-instruction: LLMのための日本語インストラクションデータ
関根聡, 安藤まや, 後藤美知子, 鈴木久美, 河原大輔, 井之上直也, 乾健太郎. ichikara-instruction: LLMのための日本語インストラクションデータの構築. 言語処理学会第30回年次大会(2024) CC-BY-NC-SA
weblab-GENIAC/aya-ja-nemotron-dpo-masked
weblab-GENIAC
weblab-GENIAC/aya-ja-nemotron-dpo-masked
Apache License 2.0
Model tree for thesugar/llm-jp-3-13b-it_lora-DPO-12-17
Base model
llm-jp/llm-jp-3-13b