theprint's picture
Adding Evaluation Results (#1)
af04603 verified
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
base_model: unsloth/llama-3.2-3b-instruct-bnb-4bit
datasets:
- theprint/VanRossum-GPT
model-index:
- name: Llama-3.2-3B-VanRossum
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 47.83
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/Llama-3.2-3B-VanRossum
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 19.37
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/Llama-3.2-3B-VanRossum
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 9.37
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/Llama-3.2-3B-VanRossum
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 2.35
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/Llama-3.2-3B-VanRossum
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 6.55
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/Llama-3.2-3B-VanRossum
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 19.67
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/Llama-3.2-3B-VanRossum
name: Open LLM Leaderboard
---
# Homage to Python
This model has been trained for **1 epoch** on the VanRossum dataset.
The VanRossum dataset is all Python! I used [DataMix](https://github.com/theprint/DataMix) to combine a handful of highly rated Python-centric datasets, to get a sampling of each and create something new.
This data set has **80,000 entries** and is named after [**Guido Van Rossum**](https://en.wikipedia.org/wiki/Guido_van_Rossum), the man who invented Python back in 1991.
See the [VanRossum Collection](https://huggingface.co/collections/theprint/vanrossum-67363abb2d3459644d7fd102) on HF for all things related to this dataset.
## Alpaca / GPT
There are 2 versions of this dataset available on Huggingface.
- [VanRossum-GPT](https://huggingface.co/datasets/theprint/VanRossum-GPT)
- [VanRossum-Alpaca](https://huggingface.co/datasets/theprint/VanRossum-Alpaca)
# Uploaded model
- **Developed by:** theprint
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3.2-3b-instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_theprint__Llama-3.2-3B-VanRossum)
| Metric |Value|
|-------------------|----:|
|Avg. |17.52|
|IFEval (0-Shot) |47.83|
|BBH (3-Shot) |19.37|
|MATH Lvl 5 (4-Shot)| 9.37|
|GPQA (0-shot) | 2.35|
|MuSR (0-shot) | 6.55|
|MMLU-PRO (5-shot) |19.67|