This is a q5_K_M GGUF quantization of https://huggingface.co/s3nh/TinyLLama-4x1.1B-MoE.

Not sure how well it performs, also my first quantization, so fingers crossed.

It is a Mixture of Experts model with https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0 as it's base model.

The other 3 models in the merge are:

https://huggingface.co/78health/TinyLlama_1.1B-function-calling

https://huggingface.co/phanerozoic/Tiny-Pirate-1.1b-v0.1

https://huggingface.co/Tensoic/TinyLlama-1.1B-3T-openhermes

I make no claims to any of the development, i simply wanted to try it out so I quantized and then thought I'd share it if anyone else was feeling experimental.


default: #(from modelfile for tinyllama on ollama)

TEMPLATE """<|system|> {{ .System }} <|user|> {{ .Prompt }} <|assistant|> """ SYSTEM """You are a helpful AI assistant.""" #(Tweak this to adjust personality etc.)

PARAMETER stop "<|system|>" PARAMETER stop "<|user|>" PARAMETER stop "<|assistant|>" PARAMETER stop ""


Model card from https://huggingface.co/s3nh/TinyLLama-4x1.1B-MoE

Example usage:

from transformers import AutoModelForCausalLM from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("s3nh/TinyLLama-1.1B-MoE") tokenizer = AutoTokenizer.from_pretrained("s3nh/TinyLLama-1.1B-MoE")

input_text = """ ###Input: You are a pirate. tell me a story about wrecked ship. ###Response: """)

input_ids = tokenizer.encode(input_text, return_tensors='pt').to(device) output = model.generate(inputs=input_ids, max_length=max_length, do_sample=True, top_k=10, temperature=0.7, pad_token_id=tokenizer.eos_token_id, attention_mask=input_ids.new_ones(input_ids.shape)) tokenizer.decode(output[0], skip_special_tokens=True)

This model was possible to create by tremendous work of mergekit developers. I decided to merge tinyLlama models to create mixture of experts. Config used as below:

"""base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 experts:

  • source_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 positive_prompts:
    • "chat"
    • "assistant"
    • "tell me"
    • "explain"
  • source_model: 78health/TinyLlama_1.1B-function-calling positive_prompts:
    • "code"
    • "python"
    • "javascript"
    • "programming"
    • "algorithm"
  • source_model: phanerozoic/Tiny-Pirate-1.1b-v0.1 positive_prompts:
    • "storywriting"
    • "write"
    • "scene"
    • "story"
    • "character"
  • source_model: Tensoic/TinyLlama-1.1B-3T-openhermes positive_prompts:
    • "reason"
    • "provide"
    • "instruct"
    • "summarize"
    • "count" """
Downloads last month
5
GGUF
Model size
3.38B params
Architecture
llama

5-bit

Inference API
Unable to determine this model's library. Check the docs .