English Grammar Error Correction with T5
Overview
This repository contains a pretrained T5 model fine-tuned for English grammar error correction using Hugging Face's Transformers library. The model leverages a seq2seq architecture and was trained on the C4 dataset for grammar correction purposes.
Model Details
- Model Name: english-grammar-error-correction-t5-seq2seq
- Tokenizer: T5Tokenizer
- Model Architecture: T5ForConditionalGeneration
- Training Data: Fine-tuned on C4 dataset for grammar error correction tasks.
Usage
# Load model directly
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
torch_device = 'cuda' if torch.cuda.is_available() else 'cpu'
tokenizer = AutoTokenizer.from_pretrained("thenHung/english-grammar-error-correction-t5-seq2seq")
model = AutoModelForSeq2SeqLM.from_pretrained("thenHung/english-grammar-error-correction-t5-seq2seq").to(torch_device)
def correct_grammar(input_text,num_return_sequences):
batch = tokenizer([input_text],truncation=True,padding='max_length',max_length=64, return_tensors="pt").to(torch_device)
translated = model.generate(**batch,max_length=64,num_beams=4, num_return_sequences=num_return_sequences, temperature=1.5)
tgt_text = tokenizer.batch_decode(translated, skip_special_tokens=True)
return tgt_text
input_text = """
He are an teachers.
"""
num_return_sequences = 3
corrected_texts = correct_grammar(input_text, num_return_sequences)
print(corrected_texts)
# output:
# ['He is a teacher.', 'He is an educator.', 'He is one of the teachers.']
- Downloads last month
- 290
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.