Wav2Vec2-Large-XLSR-53-Odia

Fine-tuned facebook/wav2vec2-large-xlsr-53 odia using the Multilingual and code-switching ASR challenges for low resource Indian languages. When using this model, make sure that your speech input is sampled at 16kHz.

Usage

The model can be used directly (without a language model) as follows:

import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

test_dataset = load_dataset("common_voice", "or", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("theainerd/wav2vec2-large-xlsr-53-odia")
model = Wav2Vec2ForCTC.from_pretrained("theainerd/wav2vec2-large-xlsr-53-odia")
resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
  speech_array, sampling_rate = torchaudio.load(batch["path"])
  batch["speech"] = resampler(speech_array).squeeze().numpy()
  return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
  logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])

Evaluation

The model can be evaluated as follows on the Odia test data of Common Voice.

import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re

test_dataset = load_dataset("common_voice", "or", split="test")
wer = load_metric("wer")

processor = Wav2Vec2Processor.from_pretrained("theainerd/wav2vec2-large-xlsr-53-odia")
model = Wav2Vec2ForCTC.from_pretrained("theainerd/wav2vec2-large-xlsr-53-odia")
model.to("cuda")

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
  batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
  speech_array, sampling_rate = torchaudio.load(batch["path"])
  batch["speech"] = resampler(speech_array).squeeze().numpy()
  return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
  inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

  with torch.no_grad():
      logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

      pred_ids = torch.argmax(logits, dim=-1)
      batch["pred_strings"] = processor.batch_decode(pred_ids)
      return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))

Test Result: 68.75 %

Training

The script used for training can be found Odia ASR Fine Tuning Wav2Vec2

Downloads last month
3,440
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using theainerd/wav2vec2-large-xlsr-53-odia 5

Evaluation results