|
--- |
|
tags: |
|
- pyannote |
|
- pyannote-audio |
|
- pyannote-audio-pipeline |
|
- audio |
|
- voice |
|
- speech |
|
- speaker |
|
- speaker-diarization |
|
- speaker-change-detection |
|
- voice-activity-detection |
|
- overlapped-speech-detection |
|
- automatic-speech-recognition |
|
license: mit |
|
extra_gated_prompt: "The collected information will help acquire a better knowledge of pyannote.audio userbase and help its maintainers improve it further. Though this pipeline uses MIT license and will always remain open-source, we will occasionnally email you about premium pipelines and paid services around pyannote." |
|
extra_gated_fields: |
|
Company/university: text |
|
Website: text |
|
--- |
|
|
|
Using this open-source model in production? |
|
Consider switching to [pyannoteAI](https://www.pyannote.ai) for better and faster options. |
|
|
|
# 🎹 Speaker diarization 3.1 |
|
|
|
This pipeline is the same as [`pyannote/speaker-diarization-3.0`](https://hf.co/pyannote/speaker-diarization-3.1) except it removes the [problematic](https://github.com/pyannote/pyannote-audio/issues/1537) use of `onnxruntime`. |
|
Both speaker segmentation and embedding now run in pure PyTorch. This should ease deployment and possibly speed up inference. |
|
It requires pyannote.audio version 3.1 or higher. |
|
|
|
It ingests mono audio sampled at 16kHz and outputs speaker diarization as an [`Annotation`](http://pyannote.github.io/pyannote-core/structure.html#annotation) instance: |
|
|
|
- stereo or multi-channel audio files are automatically downmixed to mono by averaging the channels. |
|
- audio files sampled at a different rate are resampled to 16kHz automatically upon loading. |
|
|
|
## Requirements |
|
|
|
1. Install [`pyannote.audio`](https://github.com/pyannote/pyannote-audio) `3.1` with `pip install pyannote.audio` |
|
2. Accept [`pyannote/segmentation-3.0`](https://hf.co/pyannote/segmentation-3.0) user conditions |
|
3. Accept [`pyannote/speaker-diarization-3.1`](https://hf.co/pyannote/speaker-diarization-3.1) user conditions |
|
4. Create access token at [`hf.co/settings/tokens`](https://hf.co/settings/tokens). |
|
|
|
## Usage |
|
|
|
```python |
|
# instantiate the pipeline |
|
from pyannote.audio import Pipeline |
|
pipeline = Pipeline.from_pretrained( |
|
"pyannote/speaker-diarization-3.1", |
|
use_auth_token="HUGGINGFACE_ACCESS_TOKEN_GOES_HERE") |
|
|
|
# run the pipeline on an audio file |
|
diarization = pipeline("audio.wav") |
|
|
|
# dump the diarization output to disk using RTTM format |
|
with open("audio.rttm", "w") as rttm: |
|
diarization.write_rttm(rttm) |
|
``` |
|
|
|
### Processing on GPU |
|
|
|
`pyannote.audio` pipelines run on CPU by default. |
|
You can send them to GPU with the following lines: |
|
|
|
```python |
|
import torch |
|
pipeline.to(torch.device("cuda")) |
|
``` |
|
|
|
### Processing from memory |
|
|
|
Pre-loading audio files in memory may result in faster processing: |
|
|
|
```python |
|
waveform, sample_rate = torchaudio.load("audio.wav") |
|
diarization = pipeline({"waveform": waveform, "sample_rate": sample_rate}) |
|
``` |
|
|
|
### Monitoring progress |
|
|
|
Hooks are available to monitor the progress of the pipeline: |
|
|
|
```python |
|
from pyannote.audio.pipelines.utils.hook import ProgressHook |
|
with ProgressHook() as hook: |
|
diarization = pipeline("audio.wav", hook=hook) |
|
``` |
|
|
|
### Controlling the number of speakers |
|
|
|
In case the number of speakers is known in advance, one can use the `num_speakers` option: |
|
|
|
```python |
|
diarization = pipeline("audio.wav", num_speakers=2) |
|
``` |
|
|
|
One can also provide lower and/or upper bounds on the number of speakers using `min_speakers` and `max_speakers` options: |
|
|
|
```python |
|
diarization = pipeline("audio.wav", min_speakers=2, max_speakers=5) |
|
``` |
|
|
|
## Benchmark |
|
|
|
This pipeline has been benchmarked on a large collection of datasets. |
|
|
|
Processing is fully automatic: |
|
|
|
- no manual voice activity detection (as is sometimes the case in the literature) |
|
- no manual number of speakers (though it is possible to provide it to the pipeline) |
|
- no fine-tuning of the internal models nor tuning of the pipeline hyper-parameters to each dataset |
|
|
|
... with the least forgiving diarization error rate (DER) setup (named _"Full"_ in [this paper](https://doi.org/10.1016/j.csl.2021.101254)): |
|
|
|
- no forgiveness collar |
|
- evaluation of overlapped speech |
|
|
|
| Benchmark | [DER%](. "Diarization error rate") | [FA%](. "False alarm rate") | [Miss%](. "Missed detection rate") | [Conf%](. "Speaker confusion rate") | Expected output | File-level evaluation | |
|
| ------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------- | --------------------------- | ---------------------------------- | ----------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------- | |
|
| [AISHELL-4](http://www.openslr.org/111/) | 12.2 | 3.8 | 4.4 | 4.0 | [RTTM](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AISHELL.SpeakerDiarization.Benchmark.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AISHELL.SpeakerDiarization.Benchmark.test.eval) | |
|
| [AliMeeting (_channel 1_)](https://www.openslr.org/119/) | 24.4 | 4.4 | 10.0 | 10.0 | [RTTM](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AliMeeting.SpeakerDiarization.Benchmark.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AliMeeting.SpeakerDiarization.Benchmark.test.eval) | |
|
| [AMI (_headset mix,_](https://groups.inf.ed.ac.uk/ami/corpus/) [_only_words_)](https://github.com/BUTSpeechFIT/AMI-diarization-setup) | 18.8 | 3.6 | 9.5 | 5.7 | [RTTM](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AMI.SpeakerDiarization.Benchmark.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AMI.SpeakerDiarization.Benchmark.test.eval) | |
|
| [AMI (_array1, channel 1,_](https://groups.inf.ed.ac.uk/ami/corpus/) [_only_words)_](https://github.com/BUTSpeechFIT/AMI-diarization-setup) | 22.4 | 3.8 | 11.2 | 7.5 | [RTTM](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AMI-SDM.SpeakerDiarization.Benchmark.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AMI-SDM.SpeakerDiarization.Benchmark.test.eval) | |
|
| [AVA-AVD](https://arxiv.org/abs/2111.14448) | 50.0 | 10.8 | 15.7 | 23.4 | [RTTM](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AVA-AVD.SpeakerDiarization.Benchmark.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AVA-AVD.SpeakerDiarization.Benchmark.test.eval) | |
|
| [DIHARD 3 (_Full_)](https://arxiv.org/abs/2012.01477) | 21.7 | 6.2 | 8.1 | 7.3 | [RTTM](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/DIHARD.SpeakerDiarization.Benchmark.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/DIHARD.SpeakerDiarization.Benchmark.test.eval) | |
|
| [MSDWild](https://x-lance.github.io/MSDWILD/) | 25.3 | 5.8 | 8.0 | 11.5 | [RTTM](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/MSDWILD.SpeakerDiarization.Benchmark.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/MSDWILD.SpeakerDiarization.Benchmark.test.eval) | |
|
| [REPERE (_phase 2_)](https://islrn.org/resources/360-758-359-485-0/) | 7.8 | 1.8 | 2.6 | 3.5 | [RTTM](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/REPERE.SpeakerDiarization.Benchmark.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/REPERE.SpeakerDiarization.Benchmark.test.eval) | |
|
| [VoxConverse (_v0.3_)](https://github.com/joonson/voxconverse) | 11.3 | 4.1 | 3.4 | 3.8 | [RTTM](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/VoxConverse.SpeakerDiarization.Benchmark.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/VoxConverse.SpeakerDiarization.Benchmark.test.eval) | |
|
|
|
## Citations |
|
|
|
```bibtex |
|
@inproceedings{Plaquet23, |
|
author={Alexis Plaquet and Hervé Bredin}, |
|
title={{Powerset multi-class cross entropy loss for neural speaker diarization}}, |
|
year=2023, |
|
booktitle={Proc. INTERSPEECH 2023}, |
|
} |
|
``` |
|
|
|
```bibtex |
|
@inproceedings{Bredin23, |
|
author={Hervé Bredin}, |
|
title={{pyannote.audio 2.1 speaker diarization pipeline: principle, benchmark, and recipe}}, |
|
year=2023, |
|
booktitle={Proc. INTERSPEECH 2023}, |
|
} |
|
``` |
|
|