metadata
language:
- pt
license: apache-2.0
library_name: transformers
tags:
- text-generation-inference
- TensorBlock
- GGUF
datasets:
- TucanoBR/GigaVerbo
metrics:
- perplexity
pipeline_tag: text-generation
widget:
- text: A floresta da Amazônia é conhecida por sua
example_title: Exemplo
- text: Uma das coisas que Portugal, Angola, Brasil e Moçambique tem em comum é o
example_title: Exemplo
- text: O Carnaval do Rio de Janeiro é
example_title: Exemplo
inference:
parameters:
repetition_penalty: 1.2
temperature: 0.2
top_k: 20
top_p: 0.2
max_new_tokens: 150
co2_eq_emissions:
emissions: 960000
source: CodeCarbon
training_type: pre-training
geographical_location: Germany
hardware_used: NVIDIA A100-SXM4-80GB
base_model: TucanoBR/Tucano-1b1
model-index:
- name: Tucano-1b1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: CALAME-PT
type: NOVA-vision-language/calame-pt
split: all
args:
num_few_shot: 0
metrics:
- type: acc
value: 58.24
name: accuracy
source:
url: https://huggingface.co/datasets/NOVA-vision-language/calame-pt
name: Context-Aware LAnguage Modeling Evaluation for Portuguese
- task:
type: text-generation
name: Text Generation
dataset:
name: LAMBADA-PT
type: TucanoBR/lambada-pt
split: train
args:
num_few_shot: 0
metrics:
- type: acc
value: 34.7
name: accuracy
source:
url: https://huggingface.co/datasets/TucanoBR/lambada-pt
name: LAMBADA-PT
- task:
type: text-generation
name: Text Generation
dataset:
name: ENEM Challenge (No Images)
type: eduagarcia/enem_challenge
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 21.41
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BLUEX (No Images)
type: eduagarcia-temp/BLUEX_without_images
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 23.37
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: OAB Exams
type: eduagarcia/oab_exams
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 25.97
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 RTE
type: assin2
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 60.82
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 STS
type: eduagarcia/portuguese_benchmark
split: test
args:
num_few_shot: 10
metrics:
- type: pearson
value: 24.63
name: pearson
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: FaQuAD NLI
type: ruanchaves/faquad-nli
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 43.97
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HateBR Binary
type: ruanchaves/hatebr
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 29
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: PT Hate Speech Binary
type: hate_speech_portuguese
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 41.19
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: tweetSentBR
type: eduagarcia-temp/tweetsentbr
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 32.18
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: ARC-Challenge (PT)
type: arc_pt
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 30.43
name: normalized accuracy
source:
url: https://github.com/nlp-uoregon/mlmm-evaluation
name: Evaluation Framework for Multilingual Large Language Models
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (PT)
type: hellaswag_pt
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 42.84
name: normalized accuracy
source:
url: https://github.com/nlp-uoregon/mlmm-evaluation
name: Evaluation Framework for Multilingual Large Language Models
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA
type: truthfulqa_pt
args:
num_few_shot: 0
metrics:
- type: mc2
value: 41.59
name: bleurt
source:
url: https://github.com/nlp-uoregon/mlmm-evaluation
name: Evaluation Framework for Multilingual Large Language Models
Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server
TucanoBR/Tucano-1b1 - GGUF
This repo contains GGUF format model files for TucanoBR/Tucano-1b1.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.
Prompt template
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
Tucano-1b1-Q2_K.gguf | Q2_K | 0.432 GB | smallest, significant quality loss - not recommended for most purposes |
Tucano-1b1-Q3_K_S.gguf | Q3_K_S | 0.499 GB | very small, high quality loss |
Tucano-1b1-Q3_K_M.gguf | Q3_K_M | 0.548 GB | very small, high quality loss |
Tucano-1b1-Q3_K_L.gguf | Q3_K_L | 0.592 GB | small, substantial quality loss |
Tucano-1b1-Q4_0.gguf | Q4_0 | 0.637 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
Tucano-1b1-Q4_K_S.gguf | Q4_K_S | 0.640 GB | small, greater quality loss |
Tucano-1b1-Q4_K_M.gguf | Q4_K_M | 0.668 GB | medium, balanced quality - recommended |
Tucano-1b1-Q5_0.gguf | Q5_0 | 0.766 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
Tucano-1b1-Q5_K_S.gguf | Q5_K_S | 0.766 GB | large, low quality loss - recommended |
Tucano-1b1-Q5_K_M.gguf | Q5_K_M | 0.782 GB | large, very low quality loss - recommended |
Tucano-1b1-Q6_K.gguf | Q6_K | 0.903 GB | very large, extremely low quality loss |
Tucano-1b1-Q8_0.gguf | Q8_0 | 1.170 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/Tucano-1b1-GGUF --include "Tucano-1b1-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/Tucano-1b1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'