Tucano-1b1-GGUF / README.md
morriszms's picture
Upload folder using huggingface_hub
5f409c3 verified
metadata
language:
  - pt
license: apache-2.0
library_name: transformers
tags:
  - text-generation-inference
  - TensorBlock
  - GGUF
datasets:
  - TucanoBR/GigaVerbo
metrics:
  - perplexity
pipeline_tag: text-generation
widget:
  - text: A floresta da Amazônia é conhecida por sua
    example_title: Exemplo
  - text: Uma das coisas que Portugal, Angola, Brasil e Moçambique tem em comum é o
    example_title: Exemplo
  - text: O Carnaval do Rio de Janeiro é
    example_title: Exemplo
inference:
  parameters:
    repetition_penalty: 1.2
    temperature: 0.2
    top_k: 20
    top_p: 0.2
    max_new_tokens: 150
co2_eq_emissions:
  emissions: 960000
  source: CodeCarbon
  training_type: pre-training
  geographical_location: Germany
  hardware_used: NVIDIA A100-SXM4-80GB
base_model: TucanoBR/Tucano-1b1
model-index:
  - name: Tucano-1b1
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: CALAME-PT
          type: NOVA-vision-language/calame-pt
          split: all
          args:
            num_few_shot: 0
        metrics:
          - type: acc
            value: 58.24
            name: accuracy
        source:
          url: https://huggingface.co/datasets/NOVA-vision-language/calame-pt
          name: Context-Aware LAnguage Modeling Evaluation for Portuguese
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: LAMBADA-PT
          type: TucanoBR/lambada-pt
          split: train
          args:
            num_few_shot: 0
        metrics:
          - type: acc
            value: 34.7
            name: accuracy
        source:
          url: https://huggingface.co/datasets/TucanoBR/lambada-pt
          name: LAMBADA-PT
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: ENEM Challenge (No Images)
          type: eduagarcia/enem_challenge
          split: train
          args:
            num_few_shot: 3
        metrics:
          - type: acc
            value: 21.41
            name: accuracy
        source:
          url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BLUEX (No Images)
          type: eduagarcia-temp/BLUEX_without_images
          split: train
          args:
            num_few_shot: 3
        metrics:
          - type: acc
            value: 23.37
            name: accuracy
        source:
          url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: OAB Exams
          type: eduagarcia/oab_exams
          split: train
          args:
            num_few_shot: 3
        metrics:
          - type: acc
            value: 25.97
            name: accuracy
        source:
          url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Assin2 RTE
          type: assin2
          split: test
          args:
            num_few_shot: 15
        metrics:
          - type: f1_macro
            value: 60.82
            name: f1-macro
        source:
          url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Assin2 STS
          type: eduagarcia/portuguese_benchmark
          split: test
          args:
            num_few_shot: 10
        metrics:
          - type: pearson
            value: 24.63
            name: pearson
        source:
          url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: FaQuAD NLI
          type: ruanchaves/faquad-nli
          split: test
          args:
            num_few_shot: 15
        metrics:
          - type: f1_macro
            value: 43.97
            name: f1-macro
        source:
          url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HateBR Binary
          type: ruanchaves/hatebr
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: f1_macro
            value: 29
            name: f1-macro
        source:
          url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: PT Hate Speech Binary
          type: hate_speech_portuguese
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: f1_macro
            value: 41.19
            name: f1-macro
        source:
          url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: tweetSentBR
          type: eduagarcia-temp/tweetsentbr
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: f1_macro
            value: 32.18
            name: f1-macro
        source:
          url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: ARC-Challenge (PT)
          type: arc_pt
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 30.43
            name: normalized accuracy
        source:
          url: https://github.com/nlp-uoregon/mlmm-evaluation
          name: Evaluation Framework for Multilingual Large Language Models
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (PT)
          type: hellaswag_pt
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 42.84
            name: normalized accuracy
        source:
          url: https://github.com/nlp-uoregon/mlmm-evaluation
          name: Evaluation Framework for Multilingual Large Language Models
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA
          type: truthfulqa_pt
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 41.59
            name: bleurt
        source:
          url: https://github.com/nlp-uoregon/mlmm-evaluation
          name: Evaluation Framework for Multilingual Large Language Models
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

TucanoBR/Tucano-1b1 - GGUF

This repo contains GGUF format model files for TucanoBR/Tucano-1b1.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.

Prompt template


Model file specification

Filename Quant type File Size Description
Tucano-1b1-Q2_K.gguf Q2_K 0.432 GB smallest, significant quality loss - not recommended for most purposes
Tucano-1b1-Q3_K_S.gguf Q3_K_S 0.499 GB very small, high quality loss
Tucano-1b1-Q3_K_M.gguf Q3_K_M 0.548 GB very small, high quality loss
Tucano-1b1-Q3_K_L.gguf Q3_K_L 0.592 GB small, substantial quality loss
Tucano-1b1-Q4_0.gguf Q4_0 0.637 GB legacy; small, very high quality loss - prefer using Q3_K_M
Tucano-1b1-Q4_K_S.gguf Q4_K_S 0.640 GB small, greater quality loss
Tucano-1b1-Q4_K_M.gguf Q4_K_M 0.668 GB medium, balanced quality - recommended
Tucano-1b1-Q5_0.gguf Q5_0 0.766 GB legacy; medium, balanced quality - prefer using Q4_K_M
Tucano-1b1-Q5_K_S.gguf Q5_K_S 0.766 GB large, low quality loss - recommended
Tucano-1b1-Q5_K_M.gguf Q5_K_M 0.782 GB large, very low quality loss - recommended
Tucano-1b1-Q6_K.gguf Q6_K 0.903 GB very large, extremely low quality loss
Tucano-1b1-Q8_0.gguf Q8_0 1.170 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/Tucano-1b1-GGUF --include "Tucano-1b1-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/Tucano-1b1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'