GGUF
Mixture of Experts
frankenmoe
Merge
mergekit
lazymergekit
Locutusque/TinyMistral-248M-v2
Locutusque/TinyMistral-248M-v2.5
Locutusque/TinyMistral-248M-v2.5-Instruct
jtatman/tinymistral-v2-pycoder-instruct-248m
Felladrin/TinyMistral-248M-SFT-v4
Locutusque/TinyMistral-248M-v2-Instruct
TensorBlock
GGUF
Inference Endpoints
license: apache-2.0 | |
tags: | |
- moe | |
- frankenmoe | |
- merge | |
- mergekit | |
- lazymergekit | |
- Locutusque/TinyMistral-248M-v2 | |
- Locutusque/TinyMistral-248M-v2.5 | |
- Locutusque/TinyMistral-248M-v2.5-Instruct | |
- jtatman/tinymistral-v2-pycoder-instruct-248m | |
- Felladrin/TinyMistral-248M-SFT-v4 | |
- Locutusque/TinyMistral-248M-v2-Instruct | |
- TensorBlock | |
- GGUF | |
base_model: M4-ai/TinyMistral-6x248M | |
inference: | |
parameters: | |
do_sample: true | |
temperature: 0.2 | |
top_p: 0.14 | |
top_k: 12 | |
max_new_tokens: 250 | |
repetition_penalty: 1.15 | |
widget: | |
- text: '<|im_start|>user | |
Write me a Python program that calculates the factorial of n. <|im_end|> | |
<|im_start|>assistant | |
' | |
- text: An emerging clinical approach to treat substance abuse disorders involves | |
a form of cognitive-behavioral therapy whereby addicts learn to reduce their reactivity | |
to drug-paired stimuli through cue-exposure or extinction training. It is, however, | |
datasets: | |
- nampdn-ai/mini-peS2o | |
<div style="width: auto; margin-left: auto; margin-right: auto"> | |
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> | |
</div> | |
<div style="display: flex; justify-content: space-between; width: 100%;"> | |
<div style="display: flex; flex-direction: column; align-items: flex-start;"> | |
<p style="margin-top: 0.5em; margin-bottom: 0em;"> | |
Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> | |
</p> | |
</div> | |
</div> | |
## M4-ai/TinyMistral-6x248M - GGUF | |
This repo contains GGUF format model files for [M4-ai/TinyMistral-6x248M](https://huggingface.co/M4-ai/TinyMistral-6x248M). | |
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). | |
<div style="text-align: left; margin: 20px 0;"> | |
<a href="https://tensorblock.co/waitlist/client" style="display: inline-block; padding: 10px 20px; background-color: #007bff; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;"> | |
Run them on the TensorBlock client using your local machine ↗ | |
</a> | |
</div> | |
## Prompt template | |
``` | |
``` | |
## Model file specification | |
| Filename | Quant type | File Size | Description | | |
| -------- | ---------- | --------- | ----------- | | |
| [TinyMistral-6x248M-Q2_K.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-GGUF/blob/main/TinyMistral-6x248M-Q2_K.gguf) | Q2_K | 0.379 GB | smallest, significant quality loss - not recommended for most purposes | | |
| [TinyMistral-6x248M-Q3_K_S.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-GGUF/blob/main/TinyMistral-6x248M-Q3_K_S.gguf) | Q3_K_S | 0.445 GB | very small, high quality loss | | |
| [TinyMistral-6x248M-Q3_K_M.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-GGUF/blob/main/TinyMistral-6x248M-Q3_K_M.gguf) | Q3_K_M | 0.487 GB | very small, high quality loss | | |
| [TinyMistral-6x248M-Q3_K_L.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-GGUF/blob/main/TinyMistral-6x248M-Q3_K_L.gguf) | Q3_K_L | 0.527 GB | small, substantial quality loss | | |
| [TinyMistral-6x248M-Q4_0.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-GGUF/blob/main/TinyMistral-6x248M-Q4_0.gguf) | Q4_0 | 0.574 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | |
| [TinyMistral-6x248M-Q4_K_S.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-GGUF/blob/main/TinyMistral-6x248M-Q4_K_S.gguf) | Q4_K_S | 0.577 GB | small, greater quality loss | | |
| [TinyMistral-6x248M-Q4_K_M.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-GGUF/blob/main/TinyMistral-6x248M-Q4_K_M.gguf) | Q4_K_M | 0.613 GB | medium, balanced quality - recommended | | |
| [TinyMistral-6x248M-Q5_0.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-GGUF/blob/main/TinyMistral-6x248M-Q5_0.gguf) | Q5_0 | 0.695 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | |
| [TinyMistral-6x248M-Q5_K_S.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-GGUF/blob/main/TinyMistral-6x248M-Q5_K_S.gguf) | Q5_K_S | 0.695 GB | large, low quality loss - recommended | | |
| [TinyMistral-6x248M-Q5_K_M.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-GGUF/blob/main/TinyMistral-6x248M-Q5_K_M.gguf) | Q5_K_M | 0.715 GB | large, very low quality loss - recommended | | |
| [TinyMistral-6x248M-Q6_K.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-GGUF/blob/main/TinyMistral-6x248M-Q6_K.gguf) | Q6_K | 0.824 GB | very large, extremely low quality loss | | |
| [TinyMistral-6x248M-Q8_0.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-GGUF/blob/main/TinyMistral-6x248M-Q8_0.gguf) | Q8_0 | 1.067 GB | very large, extremely low quality loss - not recommended | | |
## Downloading instruction | |
### Command line | |
Firstly, install Huggingface Client | |
```shell | |
pip install -U "huggingface_hub[cli]" | |
``` | |
Then, downoad the individual model file the a local directory | |
```shell | |
huggingface-cli download tensorblock/TinyMistral-6x248M-GGUF --include "TinyMistral-6x248M-Q2_K.gguf" --local-dir MY_LOCAL_DIR | |
``` | |
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: | |
```shell | |
huggingface-cli download tensorblock/TinyMistral-6x248M-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' | |
``` | |