Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server
acrastt/Marx-3B-V2 - GGUF
This repo contains GGUF format model files for acrastt/Marx-3B-V2.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.
Prompt template
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
Marx-3B-V2-Q2_K.gguf | Q2_K | 1.844 GB | smallest, significant quality loss - not recommended for most purposes |
Marx-3B-V2-Q3_K_S.gguf | Q3_K_S | 1.844 GB | very small, high quality loss |
Marx-3B-V2-Q3_K_M.gguf | Q3_K_M | 1.992 GB | very small, high quality loss |
Marx-3B-V2-Q3_K_L.gguf | Q3_K_L | 2.062 GB | small, substantial quality loss |
Marx-3B-V2-Q4_0.gguf | Q4_0 | 1.844 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
Marx-3B-V2-Q4_K_S.gguf | Q4_K_S | 2.238 GB | small, greater quality loss |
Marx-3B-V2-Q4_K_M.gguf | Q4_K_M | 2.403 GB | medium, balanced quality - recommended |
Marx-3B-V2-Q5_0.gguf | Q5_0 | 2.231 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
Marx-3B-V2-Q5_K_S.gguf | Q5_K_S | 2.424 GB | large, low quality loss - recommended |
Marx-3B-V2-Q5_K_M.gguf | Q5_K_M | 2.568 GB | large, very low quality loss - recommended |
Marx-3B-V2-Q6_K.gguf | Q6_K | 3.392 GB | very large, extremely low quality loss |
Marx-3B-V2-Q8_0.gguf | Q8_0 | 3.392 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/Marx-3B-V2-GGUF --include "Marx-3B-V2-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/Marx-3B-V2-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
- Downloads last month
- 8
Model tree for tensorblock/Marx-3B-V2-GGUF
Base model
acrastt/Marx-3B-V2Dataset used to train tensorblock/Marx-3B-V2-GGUF
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard44.030
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard72.920
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard27.840
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard39.920
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard66.540
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard1.210